Probing scalar Non Standard Interactions at DUNE, T2HK, and T2HKK

Abinash Medhi*

Co-authors: Ms. Dharitree Bezboruah, Dr. Debajyoti Dutta, and Dr. Moon Moon Devi Based on JHEP 06 (2022) 129

> * amedhi@tezu.ernet.in * Department of Physics, Tezpur University, Assam-784028, INDIA

> > July 7, 2022

International Conference on High Energy Physics, Bologna, Italy July 6 – 13, 2022

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 필

Outline

Introduction

2 Scalar Non Standard Interactions

3 Methodology

4 Results and Discussion

5 Conclusions

- Neutrino oscillations essentially confirms neutrinos are massive.
- It provides the first firm experimental evidence of physics beyond Standard Model (BSM).
- The models describing BSM physics often comes with some additional unknown coupling of neutrinos.
- These new interactions are called Non Standard Interactions (NSIs), as it can't be explained within the framework of SM.

- NSI can introduce matter effect in neutrino oscillations.
- The impact of NSI on oscillation probability: an interesting sector to probe new physics.
- Neutrinos coupling with a scalar is an excellent probe to study new physics in Long Baseline experiments.

L. Wolfenstein, Phys. Rev. D 17 (1978)

Ge S.-F. and Parke S. J. , Phys. Rev. Lett. (2019)

Neutrino Oscillation in matter

- The weakly interacting neutrinos might interact with matter via charged-current (CC) or neutral-current (NC) when they pass through matter. more
- The Hamiltonian for neutrino oscillation in matter is given by :

$$\mathcal{H}_{matter} pprox U rac{MM^{\dagger}}{2E_{\nu}} U^{\dagger} \pm V_{SI}.$$

Where

$$V_{SI} = \begin{pmatrix} V_{C} + V_{N} & 0 & 0 \\ 0 & V_{N} & 0 \\ 0 & 0 & V_{N} \end{pmatrix},$$
$$V_{C} = \pm \sqrt{2}G_{F}n_{e} \text{ and } V_{N} = -\frac{G_{F}n_{n}}{\sqrt{2}}$$

Scalar Non Standard Interactions

• The Lagrangian of such interactions can be formulated as :

$$\mathcal{L}_{\text{eff}}^{\text{S}} = \frac{\mathcal{Y}_{t} \mathcal{Y}_{\alpha\beta}}{m_{\phi}^{2}} (\bar{\nu}_{\alpha}(\boldsymbol{p}_{3}) \nu_{\beta}(\boldsymbol{p}_{2})) (\bar{f}(\boldsymbol{p}_{1}) f(\boldsymbol{p}_{4}))$$

• The corresponding neutrino Hamiltonian modifies as:

$$\mathcal{H}_{NSI} pprox rac{\left(UMU^{\dagger} + \delta M
ight) \left(UMU^{\dagger} + \delta M
ight)^{\dagger}}{2E_{\nu}} \pm V_{\mathrm{SI}},$$

 $\delta \mathrm{M} = \sum_{f} rac{n_{f} y_{f} y_{lpha eta}}{m_{\phi}^{2}}$

• The effect appears as correction/addition/perturbation to the neutrino mass term.

where.

• The effect of scalar NSI can be parametrize as a 3×3 matrix :

$$\delta M = \sqrt{\Delta m_{31}^2} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{\mu e} & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{\tau e} & \eta_{\tau\mu} & \eta_{\tau\tau} \end{pmatrix}$$

- $\eta_{\alpha\beta}$ elements are dimensionless and quantifies the size of scalar NSI.
- A framework is made with the modified Hamiltonian in GLoBES with different configuration of LBL experiments viz. DUNE, T2HK, and T2HKK.
- The values of mixing parameters used in the analysis :

$sin^2\theta_{12}$	$sin^2 \theta_{13}$	$sin^2 \theta_{23}$	δ_{CP}	$\Delta m_{21}^2 (eV^2)$	$\Delta m_{31}^2 (eV^2)$
0.308	0.0234	0.5348	<i>-π</i> /2	7.54×10 ⁻⁵	2.43×10 ⁻³

Results : $P_{\mu e}$ vs E with non zero $\eta_{ee}/\eta_{\mu\mu}/\eta_{\tau\tau}$

Abinash Medhi

Results : $P_{\mu e}$ vs δ_{CP} with non zero $\eta_{ee}/\eta_{\mu\mu}/\eta_{\tau\tau}$

• Figures show the presence of various degeneracies with varied η and δ_{CP} values.

Results: $P_{\mu e}$ vs E for various test values of absolute *v*-masses

 Scalar NSI brings in a dependence of *v*-oscillations probability on the absolute *v*-masses.

• Scalar NSI gives a possibility of probing it to various *v*-mass models.

ICHEP 2022

Scalar NSI at LBL experiments

• We define the statistical χ^2 as,

$$\Delta \chi^{2} \equiv \min_{\eta} \sum_{i} \sum_{j} \frac{\left[N_{true}^{i,j}(\eta) - N_{test}^{i,j}(\eta)\right]^{2}}{N_{true}^{i,j}(\eta)}$$

 $N_{true}^{i,j}$ ($N_{test}^{i,j}$) : number of true (test) events in the {*i*, *j*}-th bin.

• This provides experiment's sensitivity towards distinguishing standard and non-standard effects.

 Huber, P., Lindner, M., Winter, W. Comput. Phys. Commun., (2005)
 Image: Comput. Phys. Comput. Phys. Commun., (2005)

 ICHEP 2022
 Scalar NSI at LBL experiments

 Abinash Medhi
 10/16

Results : χ^2 vs test η elements

• DUNE: 5 years (ν) + 5 years ($\bar{\nu}$)

• Sensitivity towards constraining η_{ee} is less as compared to $\eta_{\mu\mu}$ or $\eta_{\tau\tau}$ cases.

ICHEP 2022

Scalar NSI at LBL experiments

Abinash Medhi

11/16

Results : Effects on CP Violation sensitivity

$$\Delta \chi^2_{\rm CPV} \left(\delta^{\rm true}_{\rm CP} \right) = \min \left[\chi^2 \left(\delta^{\rm true}_{CP}, \delta^{\rm test}_{CP} = 0 \right), \, \chi^2 (\delta^{\rm true}_{CP}, \delta^{\rm test}_{CP} = \pm \pi) \right].$$

• Negative η deteriorates CP Violation sensitivity.

A Medhi, D Dutta, MM Devi, JHEP 06 (2022) 129

ICHEP 2022

Scalar NSI at LBL experiments

DUNE [5 (v) + 5 (\bar{v})]

Abinash Medhi

Results : Effects on CP precision sensitivity

• True $\delta_{CP} = -90^{\circ}$

DUNE [5 (v) + 5 (\bar{v})]

• Positive (Negative) η enhances (deteriorates) CP precision sensitivity.

A Medhi, D Dutta, MM Devi, JHEP 06 (2022) 129		(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	୬୯୯
ICHEP 2022	Scalar NSI at LBL experiments	Abinash Medhi	13/16

Synergy study with DUNE, T2HK, and T2HKK

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Results : Effects on CP Violation sensitivity

• Negative η deteriorates CP Violation sensitivity.more

Draft in preparation	
ICHEP 2022	Scalar NSI a

alar NSI at LBL experiments

Abinash Medhi

14/16

Results : Effects on CP Violation sensitivity

With T2HKK the sensitivities are better as compared to T2HK.

Draft in preparation	·	l
ICHEP 2022	Scalar NSI at LBL experiments	

Abinash Medhi

15/16

- Scalar NSI has a notable impact on the neutrino oscillations probabilities at LBL experiments.
- The CP sensitivity of DUNE gets spoiled in presence of scalar NSI.
- It is crucial to identify such subdominant effects of neutrino oscillations for accurate interpretation of data.
- A good window to study new physics beyond Standard Model (BSM).

Thank You for your kind attention !

Acknowledgements: This work is supported by the Research and Innovation grant 2021 (DoRD/RIG/10-73/1592-A) of Tezpur University and DST SERB grant EMR/2021/002961 a C

Back Up

(□) (四) (Ξ) (Ξ) (Ξ) (Ξ)

Back up: Schematic representation

Schematic pictures of standard matter effects (left picture) and matter non-standard neutrino interactions (right picture).

Reference: DOI:10.1088/0034-4885/76/4/044201

Baseline	1300 km
Target Mass	35 kton Liquid Argon TPC
Run time	5 years of v mode and 5 years of \bar{v} mode
Energy Window	0.375 GeV - 10.125 GeV
Profile type	single layer
Matter density	2.95 g/ <i>cm</i> ³

Table: Details of the detector configuration

∃ >

< 口 > < 同 >

Neutrino interaction with matter

 Neutrinos interact with matter via charged-current (CC) or neutral-current (NC) interactions.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

- Only v_e participate in CC interactions.
- NC interactions are flavour blind.

return

Experiment	Baseline (L in km)	Fiducial Volume (in kton)	Runtime
T2HK	295 km	187 × 2	2.5 + 7.5
T2HKK	295 km; 1100 km	187(295 km) + 187(1100 km)	2.5 + 7.5
DUNE	1300 km	40	5 + 5

(□) (四) (Ξ) (Ξ) (Ξ) (Ξ)

return