Rare & BSM decays of the Higgs boson at CMS

Khawla Jaffel on behalf of the CMS Collaboration

UCLouvain, Center for Cosmology, Particle Physics and Phenomenology (BE).

Motivation to search for rare/BSM Higgs decays:

- The SM Higgs has as an extremely narrow width, $\Gamma h \sim 4.07 \text{ MeV}$, $\Gamma/M = O (10-5)$.
 - The dominant decay, to two b- quarks, is controlled by a coupling with a size of only ~ 0.017.
 - A small coupling to another light state can easily open up additional sizable decay modes.
- The Higgs provides one of only a few "portals" that allow SM matter to interact with hidden-sector matter.
- The famous/simple Higgs portal:

$$\Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2 \,,$$

- This interaction allows $h \rightarrow$ ss after electroweak symmetry breaking (EWSB), and even a coupling as small as $\zeta = 10-2$ yields Br($h \rightarrow$ BSM) = 10%.
- Possible deviations in rare decay branching fractions could be compatible with existing measurements ⇒ Precision mapping of the couplings is key to understand the nature of the Higgs boson.

Coverage and potential of exotic decays:

Decay topologies

• Intermediate lines represent an *on-shell, neutral* particle, which is either a Z-boson or a BSM particle.

• While this is not the only possible way to make a systematic list of possible exotic decays, it has the advantage that it is well-adapted to a large number of specific models in the literature.

HIG-20-008 arXiv.2206.03525

$H \rightarrow Z J/\psi$, $H \rightarrow Z \psi(2S)$

$H \rightarrow Z J/\psi$, $H \rightarrow Z \psi(2S)$

 Analysis is presented as a upper limit on branching fraction at 95% CL.

Process	Observed	Expected	Obser	ved
Higgs boson channel	Longitudinal	Longitudinal	Unpolarized	Transverse
${\cal B}({ m H} o ZJ/\psi)$	$1.9 imes 10^{-3}$	$(2.6^{+1.1}_{-0.7}) imes 10^{-3}$	$2.4 imes10^{-3}$	$2.8 imes10^{-3}$
${\cal B}({ m H} o Z\psi(2S))$	$6.6 imes10^{-3}$	$(7.1^{+2.8}_{-2.0}) imes 10^{-3}$	$8.3 imes10^{-3}$	$9.4 imes 10^{-3}$
${\cal B}({ m H} ightarrow{ m J}/\psi{ m J}/\psi)$	$3.8 imes10^{-4}$	$(4.6^{+2.0}_{-0.6}) imes 10^{-4}$	$4.7 imes10^{-4}$	$5.2 imes 10^{-4}$
${\cal B}({ m H} o \psi(2{ m S}){ m J}/\psi)$	$2.1 imes10^{-3}$	$(1.4^{+0.6}_{-0.4}) imes 10^{-3}$	$2.6 imes10^{-3}$	$2.9 imes10^{-3}$
${\cal B}({ m H} o \psi(2{ m S})\psi(2{ m S}))$	$3.0 imes10^{-3}$	$(3.3^{+1.5}_{-0.9}) imes 10^{-3}$	$3.6 imes10^{-3}$	$4.7 imes10^{-3}$
$\mathcal{B}(H \to Y(nS)Y(mS))$	$3.5 imes10^{-4}$	$(3.6^{+0.2}_{-0.3}) imes 10^{-4}$	$4.3 imes10^{-4}$	$4.6 imes10^{-4}$
${\cal B}(H\to Y(1S)Y(1S))$	$1.7 imes10^{-3}$	$(1.7^{+0.1}_{-0.1}) imes 10^{-3}$	$2.0 imes10^{-3}$	$2.2 imes 10^{-3}$
Z boson channel				
${\cal B}(Z o J/\psi J/\psi)$	$11 imes 10^{-7}$	$(9.5^{+3.8}_{-2.6}) imes10^{-7}$	$14 imes 10^{-7}$	$16 imes 10^{-7}$
$\mathcal{B}(Z \to Y(nS)Y(mS))$	$3.9 imes10^{-7}$	$(4.0^{+0.3}_{-0.3}) imes10^{-7}$	$4.9 imes10^{-7}$	$5.6 imes10^{-7}$
$\mathcal{B}(Z \to Y(1S)Y(1S))$	$1.8 imes10^{-6}$	$(1.8^{+0.1}_{-0.0}) imes10^{-6}$	$2.2 imes 10^{-6}$	$2.4 imes10^{-6}$

- Upper limits in $H \rightarrow Z J/\psi$ in four-lepton final states;
 - The estimates of 95% CL upper limit in BR is about 826 x the SM, and agrees with the expected limit.
 - More than a factor of 1000 lower upper limit than published upper limit <u>Phys. Rev. Lett. 125, 221802</u>.
- $H \rightarrow QQ$ upper limit;
 - H→YY (unpolarized) channel is 3.2 times better than predicted by <u>Physics</u> <u>Letters B 797 (2019) 134811</u>, and agrees with the expected limits.

$H \to Z \gamma$

- Search for $\gamma \ell + \ell -$ final states, with $\ell = e$ or μ .
 - Cleaner and more sensitive than and hadronic Z decay channels
 - Additional dijet selection to target VBF production
 - Additional lepton selection to target VH and ttH production
- Improve event reconstruction with FSR photon recovery and kinematic fit.
- Categorize events using two BDTs:
 - **Kinematic BDT:** discriminates signal from background.
 - VBF BDT: discriminates VBF signal from other signal modes and background
- Fit the spectrum in m_{l+l-y} search of a resonant peak near the Higgs boson mass.

$H \to Z \gamma$

- Analysis improvements, including FSR recovery, kinematic fit, and MVA-based categorization, have significantly improved sensitivity.
- Modeling and fitting the low-mass turn-on has improved reliability of the background estimation.
- Excess (2.7σ) observed in data near the Higgs boson mass (125.38 GeV).
 - \circ Best fit signal strength: μ = 2.4 ± 0.9
 - The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8).

• Exotic Higgs decay to light (pseudo)scalar "A" to photons:

- Well-motivated in BSM extensions of Higgs sector (2HDM, NMSSM, ALP)
- Br($A \rightarrow \gamma \gamma$) enhanced below mA < 2 x mµ
- $\circ \qquad \text{Smaller mA} \rightarrow \text{larger Lorentz boost}$
- Search is model-independent :
 - Fully-merged (2γ) : mA = 0.1–1.2 GeV, each A→γγ leg reconstructed as 1 merged photon object "Γ"
- Challenging mass spectrum:
 - The analysis is made possible by a novel particle reconstruction technique that utilizes end-to-end deep learning to estimate the invariant mass of merged photon candidates, mΓ, directly from the information-rich in ECAL energy deposits.

$H \to AA \to 4\gamma$

- First CMS H→AA limits below A→µµ threshold (mA < 210 MeV) assuming prompt A decays.
- The upper limits are also valid for models with dissimilar A masses, for mass differences less than the mA-SR window (0.3 GeV).
- Improves indirect constraints from Br(SM H $\rightarrow\gamma\gamma$) for mA \leq 1.2GeV.
- LHC in unique position to probe A→γγ in ways not possible at lower energy scales, can not be achieved by other experiment for e.g. GlueX A→γγ search <u>arXiv:2109.13439</u>

CMS-HIG-19-007 arXiv:2111.01299

- X = a possible BSM particle.
- Signature $4l = 4\mu$, $2e2\mu$, or 4e. Final states with τ leptons are neglected as their contribution to the signal region yield is below 1%.
- Results are interpreted in the context of;
 - Hidden Abelian Higgs model (HAHM)
 - Axion-like particles (ALPs)

VBF(Higgs) \rightarrow invisible

- In the SM, the branching fraction to invisible final states, $B(H \rightarrow inv)$, is only about 0.1%.
 - \circ In Higgs-portal models, the Higgs boson acts as the mediator between SM particles and dark matter (DM) , strongly enhancing B(H \rightarrow inv)
- Results are based on (2017+2018) data, further combined with previous 2016 search <u>arXiv.1809.05937</u> for a total integrated luminosity of 138 fb-1.
- The sensitivity to the VBF production mechanism is enhanced by using two strategies to construct two analysis categories based on;
 - Missing transverse momentum (MTR-SR)
 - Properties of jets (VTR-SR)
- Mjj, is used as a discriminating variable to separate the signal and the dominant backgrounds arising from vector boson (V= W± or Z) production in association with two jets (V+jets).

$VBF(Higgs) \rightarrow invisible$

Run 2 combination Observed (expected) upper limit B(H \rightarrow inv) < 0.17 (0.11) at 95% CL

- The addition of the γ+jets CR (VTR category) improves the expected limits by about 11% (8%) compared to 2016-like analysis, full run 2 overall improvements of 17%.
- 90% CL upper limits on the spin-independent DM-nucleon scattering cross section in Higgs-portal models, assuming a scalar or fermion DM candidate.
 - Limits are compared to results from other experiments .eg. Xenon1T, Cresst-II, CDMSlite, LUX, Panda-X II and DarkSide-50 experiments.
 - CMS results complement the direct-detection experiments in the range mDM smaller than 12 (6) GeV, assuming a fermion (scalar) DM candidate.

Conclusions:

- Non-standard Higgs decays have always been a well-motivated possibility as evidenced for BSM physics by an extensive experimental searches and growing literature.
- Analyses push boundaries by novel strategies and techniques in the hope to find our window into BSM physics.
- The search for non-standard Higgs decays should form an important component of the experimental program of the LHC and future colliders.
- Branching fractions of O(10%) into exotic decay modes are not only still allowed by existing data but will remain reasonable targets for the duration of the physics program of the LHC.

95 % upper imit BR(H→undet.) < 0.16

Thanks for listening!

$H \rightarrow AA \rightarrow 4\gamma$

- End-to-End Mass Regression in Particle Decays to Extremely Merged Photons : train convolutional neural network to estimate parent A mass of merged photons using ECAL detector deposits able to reconstruct Lorentz boosts = 60–600 for 0 < mΓ <1.2 GeV (more details in <u>EGM-20-001</u>).
 - General technique for regressing near a boundary
 - Left: predicted mF vs generated mA
 - \circ Right: data validation using $\pi 0 \rightarrow \gamma \gamma$ decays contained in hadronic jets

$H \rightarrow AA \rightarrow 4\gamma$

- First CMS H \rightarrow AA limits below A \rightarrow µµ threshold (mA < 210 MeV) assuming prompt A decays.
- The upper limits are also valid for models with dissimilar A masses, for mass differences less than the mA-SR window (0.3 GeV).
- Improves indirect constraints from Br(SM H $\rightarrow\gamma\gamma$) for mA \leq 1.2GeV.
- LHC in unique position to probe A→γγ in ways not possible at lower energy scales, can not be achieved by other experiment for e.g. GlueX A→γγ search <u>arXiv:2109.13439</u>

17

$VBF(Higgs) \rightarrow invisible$

- The shape of the Mjj distribution is used to disentangle dijets produced in VBF production from other SM processes.
 - The strong production of the V+jets processes together with the ggH signal dominate at low Mjj,
 - VBF produced V+jets processes populate the high Mjj tail, together with the VBFH signal.

Observable	MTR	VTR	
Choice of pair	leading- $p_{\rm T}$	leading- M_{ij}	
Leading (subleading) jet	$p_{ m T} > 80~(40)~{ m GeV}, \eta < 4.7$	$p_{\rm T} > 140(70){ m GeV}, \eta < 4.7$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 \mathrm{GeV}$	$160 < p_{\mathrm{T}}^{\mathrm{miss}} \leq 250$	
$\min \Delta \phi(\vec{p}_{T}^{\text{miss}}, \vec{p}_{T}^{\text{jet}})$	> 0.5 rad	$> 1.8 \mathrm{rad}$	
$ \Delta \phi_{ii} $	$< 1.5 \mathrm{rad}$	$< 1.8 \mathrm{rad}$	
M _{ii}	$> 200 \mathrm{GeV}$	> 900 GeV	
$ p_{\rm T}^{\rm miss} - {\rm calo} p_{\rm T}^{\rm miss} / p_{\rm T}^{\rm miss}$	< 0.5		
Leading/subleading jets $ \eta < 2.5$	ng jets $ \eta < 2.5$ NHEF < 0.8 , CHEF > 0.1		
HF-noise jet candidates	0 (see 5	0 (see Table ??)	
$\tau_{\rm h}$ candidates	$\mathrm{N_{ au_h}}=0$ with $p_\mathrm{T}>20\mathrm{GeV}$, $ \eta <2.3$		
b quark jet	$N_{jet} = 0$ with $p_T > 20$ GeV, DeepCSV Medium		
$\eta_{\mathrm{j}1} imes \eta_{\mathrm{j}2}$	<	< 0	
$ \Delta \eta_{jj} $	> 1		
Muons (electrons)	$N_{\mu,e} = 0$ with $p_T > 1$	10 GeV, $ \eta < 2.4 (2.5)$	
Photons	$\mathrm{N}_{\gamma}=0$ with p_{T} >	> 15 GeV, $ \eta < 2.5$	

SM +Scalar

Br(s→SM)

Size of the cubic coupling µv in units of Higgs expectation value v to yield the indicated h → ss branching fraction as a function of singlet mass, is given by;

- The data collected at the LHC7 and LHC8 may easily contain O(50,000) exotic Higgs decays per experiment, assuming ~ 10% exotic branching fraction. For those decay modes which pass trigger thresholds with high enough efficiency, dedicated searches represent a tremendous potential for discoveries of new physics.
- Branching fractions as small as O(10⁻⁶) could be detected at the LHC14 with 300 fb⁻¹, if the decay signature is both visible and clean.

Production	$\sigma_{7 {\rm TeV}} ~{ m (pb)}$	$N_{\rm ev}^{10\%}, 5 \ {\rm fb}^{-1}$	$\sigma_{8 {\rm ~TeV}}$ (pb)	$N_{\rm ev}^{10\%},20~{\rm fb}^{-1}$	$\sigma_{14 {\rm TeV}} ~{ m (pb)}$	$N_{\rm ev}^{10\%}, 300 {\rm fb}^{-1}$
ggF	15.13	7,600	19.27	38,500	49.85	1.5×10^6
VBF	1.22	610	1.58	3,200	4.18	125,000
hW^{\pm}	0.58	290	0.70	1,400	1.5	45,000
$hW^{\pm}(\ell^{\pm}\nu)$	$0.58 \cdot 0.21$	62	$0.70 \cdot 0.21$	3 00	$1.5 \cdot 0.21$	9,600
hZ	0.34	170	0.42	830	0.88	26,500
$hZ(\ell^+\ell^-)$	$0.34 \cdot 0.067$	11	$0.42 \cdot 0.067$	56	0.88 · 0.067	1,800
$t\bar{t}h$	0.086	43	0.13	260	0.61	18,300

- Event selection:
 - At least four well-identified and isolated leptons from the primary vertex are required.
 - The four-lepton invariant mass m4l is required to be within 118 < m4l < 130 GeV.
- Backgrounds processes with kinematics similar to the signal:
 - Irreducible backgrounds: SM Higgs boson, nonresonant production of ZZ via quark-antiquark annihilation or gluon fusion, and rare backgrounds such as tt + Z and triboson production.
 - *Reducible backgrounds:* Z+jets, tt, Zγ, and WZ.

- Existing Experimental Searches and Limits on Higgs portal-mediated Higgs decays:
 - Z_D were previously performed by collider experiments, for example ATLAS <u>arXiv.802.03388</u> and LHCb <u>arXiv.1710.02867</u>.
 - For mZ_D > 10 GeV, the strongest constraints come from precision electroweak measurements.
 - We expect LHC14 with 300 fb-1 to be sensitive to Br(h \rightarrow ZZD) as low as ~ 10-4 or 10-5. This would make the LHC the best probe of dark vector kinetic mixing for 10 GeV < mZD < mh/2 in the foreseeable future.

Derived by recasting the <u>CMS-PAS-HIG-13-002</u> $h \rightarrow ZZ' \rightarrow 4I$ (7+8 TeV) analysis

- The theory allows the coupling between the Higgs boson, Z boson, and the ALP field:
 - These couplings are represented by the Wilson coefficients CzH /Λ and CaH /Λ2, respectively, where Λ is the decoupling energy scale in the effective field theory, or the mass scale of new physics.

Limits on the ALP model

 $H \rightarrow aa \rightarrow \mu\mu\tau\tau$

- The light pseudo-scalars (a) decay to μμ and ττ with substantial overlap between the leptons because of the Lorentz boost.
 - \circ Search target mH = 125 (300)GeV and 3.6 (5) < ma < 21 GeV.
 - VBF process increases the expected signal yield by 8 (19)%.
- Difficult topology motivates the development of a dedicated тµ тh reconstruction method to increase the acceptance.
 - A specialized тµ тh reconstruction algorithm, based on the hadron-plus-strips (HPS) algorithm with a modified jet seed.
 - The new τ reconstruction technique makes possible the search for the decays of a heavier Higgs boson (mH= 300 GeV) to aa in the $\mu\mu$ ττ.

CMS-HIG-18-024 arXiv:2005.08694

$H \rightarrow aa \rightarrow \mu\mu\tau\tau$

- In general, 2HDMs could allow for exotic decays of the 125 GeV state of the form $H \rightarrow aa$.
 - This possibility can be realized in certain corners of parameter space, however 2HDMs are by now too constrained from existing data to allow for a wide variety of exotic Higgs decay phenomenology.
- The 2HDM+S notable example of the so-called next generation of dark matter simplified models.
 - \circ 2HDM+S upper limits on σ H x B(H \rightarrow aa)/ σ SM
 - The strongest upper limits are obtained from type-III model at $tan\beta < 1.5$.
 - These results extend current LHC searches for heavier ma bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV (<u>CMS-HIG-17-029</u>).

