XLI International Conference on High Energy Physics

Accidental symmetries in the scalar potential of the Standard Model extended with two Higgs triplets

Xin Wang

IHEP, CAS
2022.7.8

Based on XW, Y. Wang and S. Zhou, JHEP 02 (2022) 059

Outline

Background and Motivation

Bilinear-field formalism

Accidental symmetries in 2HTM

Summary

Background and Motivation

Huge success

- Prove the validity of Higgs mechanism for spontaneous symmetry breaking
- Paint a clearer portrait of the Higgs boson
- Complete the last piece of the puzzle of the SM

Remaining puzzles

- Nonzero neutrino masses
- Relation to the inflation in the early Universe
- Naturalness problem
- Electroweak phase transition
- Matter-antimatter asymmetry

Extended version of the Higgs sector? One Higgs or more?

CTo be examined over the next fifteen years

Background and Motivation

Two-Higgs-triplet model (2HTM)

Extend the SM by introducing two triplet scalars $\quad \phi_{i} \equiv\left(\xi_{i}^{1}, \xi_{i}^{2}, \xi_{i}^{3}\right)^{\mathrm{T}}(i=1,2)$ with the same hypercharge $Y=-2$

$$
\Delta_{i}=\left(\begin{array}{cc}
\xi_{3}^{i} & \xi_{1}^{i} \xi_{1}^{i}-\mathrm{i} \xi^{i} \\
\xi_{1}^{2}+\mathrm{i} \xi_{2}^{i} & -\xi_{3}^{i}
\end{array}\right)=\sqrt{2}\left(\begin{array}{cc}
\Delta^{-/ \sqrt{2}} & \Delta^{0} \\
\Delta^{--} & -\Delta^{-} / \sqrt{2}
\end{array}\right)
$$

- Neutrino masses

$$
\begin{aligned}
-\mathcal{L}_{\mathrm{Y}}= & \overline{\ell_{\mathrm{L}}} Y_{l} H E_{\mathrm{R}}+\frac{1}{2} \overline{\ell_{\mathrm{L}}} Y_{\nu 1} \boldsymbol{\sigma} \cdot \phi_{1} \mathrm{i} \sigma^{2} \ell_{\mathrm{L}}^{\mathrm{c}} \\
& +\frac{1}{2} \overline{\ell_{\mathrm{L}}} Y_{\nu 2} \boldsymbol{\sigma} \cdot \phi_{2} \mathrm{i} \sigma^{2} \ell_{\mathrm{L}}^{\mathrm{c}}+\text { h.c. }
\end{aligned}
$$

 W. Konetschny et al., PLB 1977 M. Magg et al., PLB 1980 J. Schechter et al., PRD 1980 T.P. Cheng et al., PRD 1980 G. Lazarides et al., NPB 1981 $\nu_{\mathrm{L}} \longrightarrow \longleftrightarrow \nu_{\mathrm{L}}$ R.N. Mohapatra et al., PRD 1981

$$
\left\langle\phi_{i}\right\rangle=\sqrt{2} v_{i},\langle H\rangle=v_{\mathrm{H}} / \sqrt{2} \longrightarrow M_{l} \equiv Y_{l} v_{\mathrm{H}} / \sqrt{2}, M_{\nu}=\sqrt{2} Y_{\nu 1} v_{1}+\sqrt{2} Y_{\nu 2} v_{2}
$$

Tiny neutrino masses can be attributed to the small vev's of ϕ_{i}

- Leptogenesis

E. Ma et al., PRL 1998 T. Hambye et al., NPB 2001 D.A. Sierra et al., JCAP 2014

Require at least two Higgs triplets \rightarrow Guarantee CP violation
\square Non-trivial spontaneous CP violation can emerge in the scalar sector
T.D. Lee, PRD 1973; P.M. Ferreira et al., JHEP, 2022

Background and Motivation

Gauge-invariant Lagrangian

$$
V_{\mathrm{H}}+V_{\phi}+V_{\mathrm{H} \phi}
$$

$$
\mathcal{L}_{2 \mathrm{HTM}}=\left(\mathcal{D}^{\mu} H\right)^{\dagger}\left(\mathcal{D}_{\mu} H\right)+\left(\mathcal{D}^{\mu} \boldsymbol{\phi}_{1}\right)^{\dagger} \cdot\left(\mathcal{D}_{\mu} \phi_{1}\right)+\left(\mathcal{D}^{\mu} \boldsymbol{\phi}_{2}\right)^{\dagger} \cdot\left(\mathcal{D}_{\mu} \phi_{2}\right)-V_{2 \mathrm{HTM}}
$$

$$
V_{\mathrm{H}}=-\mu_{\mathrm{H}}^{2} H^{\dagger} H+\lambda_{\mathrm{H}}\left(H^{\dagger} H\right)^{2}
$$

$$
V_{\phi}=m_{11}^{2}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}\right)+m_{22}^{2}\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}\right)+m_{12}^{2}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)+m_{12}^{* 2}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)+\lambda_{1}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}\right)^{2}
$$

$$
+\lambda_{2}\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}\right)^{2}+\lambda_{3}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}\right)\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{4}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)+\frac{\lambda_{5}}{2}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)^{2}
$$

$$
+\frac{\lambda_{5}^{*}}{2}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)^{2}+\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}\right)\left[\lambda_{6}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{6}^{*}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)\right]
$$

$$
+\left(\phi_{2}^{*} \cdot \boldsymbol{\phi}_{2}\right)\left[\lambda_{7}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{7}^{*}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)\right]+\lambda_{8}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}^{*}\right)\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{1}\right)
$$

$$
+\lambda_{9}\left(\phi_{2}^{*} \cdot \phi_{2}^{*}\right)\left(\phi_{2} \cdot \phi_{2}\right)+\lambda_{10}\left(\phi_{1}^{*} \cdot \phi_{2}^{*}\right)\left(\phi_{1} \cdot \phi_{2}\right)
$$

$$
+\lambda_{11}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}^{*}\right)\left(\boldsymbol{\phi}_{2} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{11}^{*}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{1}\right)\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}^{*}\right)+\lambda_{12}\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}^{*}\right)\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}\right)
$$

$$
+\lambda_{12}^{*}\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{1}\right)\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}^{*}\right)+\lambda_{13}\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}^{*}\right)\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{13}^{*}\left(\boldsymbol{\phi}_{2} \cdot \boldsymbol{\phi}_{2}\right)\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}^{*}\right),
$$

$$
V_{\mathrm{H} \phi}=\lambda_{14}\left(H^{\dagger} H\right)\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{1}\right)+\lambda_{15}\left(H^{\dagger} H\right)\left(\boldsymbol{\phi}_{2}^{*} \cdot \boldsymbol{\phi}_{2}\right)+\lambda_{16}\left(H^{\dagger} H\right)\left(\boldsymbol{\phi}_{1}^{*} \cdot \boldsymbol{\phi}_{2}\right)
$$

$$
+\lambda_{16}^{*}\left(H^{\dagger} H\right)\left(\boldsymbol{\phi}_{1} \cdot \boldsymbol{\phi}_{2}^{*}\right)+\lambda_{17}\left(H^{\dagger} \mathrm{i} \boldsymbol{\sigma} H\right) \cdot\left(\boldsymbol{\phi}_{1}^{*} \times \boldsymbol{\phi}_{1}\right)+\lambda_{18}\left(H^{\dagger} \mathrm{i} \boldsymbol{\sigma} H\right) \cdot\left(\boldsymbol{\phi}_{2}^{*} \times \boldsymbol{\phi}_{2}\right)
$$

$$
+\lambda_{19}\left(H^{\dagger} \mathrm{i} \boldsymbol{\sigma} H\right) \cdot\left(\boldsymbol{\phi}_{1}^{*} \times \boldsymbol{\phi}_{2}\right)+\lambda_{19}^{*}\left(H^{\dagger} \mathrm{i} \boldsymbol{\sigma} H\right) \cdot\left(\boldsymbol{\phi}_{2}^{*} \times \boldsymbol{\phi}_{1}\right)
$$

$$
+\left(\mu_{1} H^{\mathrm{T}} \mathrm{i} \sigma_{2} \boldsymbol{\sigma} \cdot \boldsymbol{\phi}_{1} H+\mu_{2} H^{\mathrm{T}} \mathrm{i} \sigma_{2} \boldsymbol{\sigma} \cdot \boldsymbol{\phi}_{2} H+\text { h.c. }\right)
$$

Background and Motivation

Accidental symmetry

"... It often happens that condition of renormalizability is so stringent that the effective Lagrangian automatically obeys one or more symmetries, which are not symmetries of the underlying theory, and may therefore be violated by the suppressed non-renormalizable terms in the effective Lagrangian..."
——S. Weinberg, "The Quantum theory of fields. Vol. 1: Foundations"
A little bit different from the accidental symmetry involved in this work:

Specific relations among coupling constants

Accidental symmetries:
Symmetries that automatically exist in the
scalar potential apart from the gauge symmetry

- Higgs family symmetry: $\phi_{i} \rightarrow \Lambda_{i j} \phi_{j}$
- Generalized CP symmetry: $\phi_{i} \rightarrow \Lambda_{i j} \phi_{j}^{*}$ Keeps invariant under

Reduce the number of free parameters Enhance the predictive power of the theory

$$
\begin{aligned}
& \phi_{1} \rightarrow+\phi_{1} \cos \theta+\phi_{2} \sin \theta \\
& \phi_{2} \rightarrow-\phi_{1} \sin \theta+\phi_{2} \cos \theta
\end{aligned}
$$

Bilinear-field formalism

Convert ϕ_{1} and ϕ_{2} into a vector R^{μ} in the bilinear space
Preliminary: 2HDM
$\mathrm{SU}(2) \otimes \mathrm{SU}(2) \rightarrow \mathrm{SO}(1,3)$

$$
[(4)
$$

M. Maniatis et al, EPJC 2006 C.C. Nishi, PRD 2006 I.P. Ivanov, PLB 2006 1. P. Ivanov, PRD 2007, 2008 Minkowski space
Reveal the geometrical properties of the 2HDM

The 2HTM case

$\boldsymbol{\phi}$ and $\boldsymbol{\phi}^{*}$ transform in the same way under the $\operatorname{SU}(2)_{\mathrm{L}}$ group (adjoint rep.)

- Necessary for us to rewrite the terms like $\left(\phi_{i}^{\dagger} \phi_{j}^{*}\right)\left(\phi_{m}^{\mathrm{T}} \phi_{n}\right)$
- Investigate family and CP symmetries simultaneously
"Majorana formalism" $\Phi=\mathrm{C} \Phi^{*}\left(\mathrm{C}=\sigma^{1} \otimes \sigma^{0} \otimes \mathbf{I}_{3 \times 3}\right)$
Require $R^{\mu}=\Phi^{\dagger} \Sigma^{\mu} \Phi\left(\Sigma^{\mu} \equiv \Sigma_{\alpha \beta}^{\mu} \sigma^{\alpha} \otimes \sigma^{\beta}\right)$ to be invariant under C R.A. Battye et al., JHEP 2011, A. Pilaftsis, PLB 2012

$$
\begin{gathered}
R^{\mu}=\Phi^{\dagger} \Sigma^{\mu} \Phi \\
\Sigma^{0}=+\frac{1}{2} \sigma^{0} \otimes \sigma^{0}, \quad \Sigma^{1}=-\frac{1}{2} \sigma^{2} \otimes \sigma^{3}, \\
\Sigma^{2}=-\frac{1}{2} \sigma^{1} \otimes \sigma^{0}, \quad \Sigma^{3}=+\frac{1}{2} \sigma^{2} \otimes \sigma^{1}, \\
\Sigma^{4}=-\frac{1}{2} \sigma^{1} \otimes \sigma^{3}, \quad \Sigma^{5}=+\frac{1}{2} \sigma^{2} \otimes \sigma^{0}, \\
\Sigma^{6}=+\frac{1}{2} \sigma^{1} \otimes \sigma^{1}, \quad \Sigma^{7}=+\frac{1}{2} \sigma^{0} \otimes \sigma^{1}, \\
\Sigma^{8}=-\frac{1}{2} \sigma^{3} \otimes \sigma^{2}, \quad \Sigma^{9}=+\frac{1}{2} \sigma^{0} \otimes \sigma^{3} .
\end{gathered}
$$

Bilinear-field formalism

Convert ϕ_{1} and ϕ_{2} into a vector R^{μ} in the bilinear space

Preliminary: 2HDM

$$
\mathrm{SU}(2) \otimes \mathrm{SU}(2) \rightarrow \mathrm{SO}(1,3)
$$

 M. Maniatis et al, EPJC 2006 C.C. Nishi, PRD 2006 I.P. Ivanov, PLB 2006 1. P. Ivanov, PRD 2007, 2008 Minkowski space
Reveal the geometrical properties of the 2HDM

The 2HTM case

 $\boldsymbol{\phi}$ and $\boldsymbol{\phi}^{*}$ transform in the same way under the $\operatorname{SU}(2)_{\mathrm{L}}$ group (adjoint rep.)

- Necessary for us to rewrite the terms like $\left(\phi_{i}^{\dagger} \phi_{j}^{*}\right)\left(\phi_{m}^{\mathrm{T}} \phi_{n}\right)$
- Investigate family and CP symmetries simultaneously
"Majorana formalism" $\Phi=\mathrm{C} \Phi^{*}\left(\mathrm{C}=\sigma^{1} \otimes \sigma^{0} \otimes \mathbf{I}_{3 \times 3}\right)$
Require $R^{\mu}=\Phi^{\dagger} \Sigma^{\mu} \Phi\left(\Sigma^{\mu} \equiv \Sigma_{\alpha \beta}^{\mu} \sigma^{\alpha} \otimes \sigma^{\beta}\right)$ to be invariant under C R.A. Battye et al., JHEP 2011, A. Pilaftsis, PLB 2012

$$
R^{\mu}=\left(\begin{array}{c}
\phi_{1}^{*} \cdot \phi_{1}+\phi_{2}^{*} \cdot \phi_{2} \\
+\frac{1}{2}\left(\phi_{1}^{*} \cdot \phi_{1}^{*}-\phi_{1} \cdot \phi_{1}-\phi_{2}^{*} \cdot \phi_{2}^{*}+\phi_{2} \cdot \phi_{2}\right) \\
-\frac{1}{2}\left(\phi_{1}^{*} \cdot \phi_{1}^{*}+\phi_{1} \cdot \phi_{1}+\phi_{2}^{*} \cdot \phi_{2}^{*}+\phi_{2} \cdot \phi_{2}\right) \\
-\mathrm{i}\left(\phi_{1}^{*} \cdot \phi_{2}^{*}-\phi_{1} \cdot \phi_{2}\right) \\
-\frac{1}{2}\left(\phi_{1}^{*} \cdot \phi_{1}^{*}-\phi_{2}^{*} \cdot \phi_{2}^{*}+\phi_{1} \cdot \phi_{1}-\phi_{2} \cdot \phi_{2}\right) \\
-\frac{1}{2}\left(\phi_{1}^{*} \cdot \phi_{1}^{*}+\phi_{2}^{*} \cdot \phi_{2}^{*}-\phi_{1} \cdot \phi_{1}-\phi_{2} \cdot \phi_{2}\right) \\
\phi_{1}^{*} \cdot \phi_{2}^{*}+\phi_{1} \cdot \phi_{2} \\
\phi_{1}^{*} \cdot \phi_{2}+\phi_{1} \cdot \phi_{2}^{*} \\
\mathrm{i}\left(\phi_{1}^{*} \cdot \phi_{2}-\phi_{1} \cdot \phi_{2}^{*}\right) \\
\phi_{1}^{*} \cdot \phi_{1}-\phi_{2}^{*} \cdot \phi_{2}
\end{array}\right)
$$

Bilinear-field formalism

The 2HTM case

Pure-triplet scalar potential

$$
V_{\phi}=\frac{1}{2} M_{\mu} R^{\mu}+\frac{1}{4} L_{\mu \nu} R^{\mu} R^{\nu}
$$

$M_{\mu}=\left(m_{11}^{2}+m_{22}^{2}, 0, \cdots, 0,2 \operatorname{Re} m_{12}^{2}, 2 \operatorname{Im} m_{12}^{2}, m_{11}^{2}-m_{22}^{2}\right)$
$L_{\mu \nu}=\left(\begin{array}{cccc}\lambda_{1}+\lambda_{2}+\lambda_{3} & \mathbf{0}_{1 \times 3} & \mathbf{0}_{1 \times 3} & P \\ \mathbf{0}_{3 \times 1} & K_{1} & K_{2} & \mathbf{0}_{3 \times 3} \\ \mathbf{0}_{3 \times 1} & K_{2}^{\mathrm{T}} & K_{1} & \mathbf{0}_{3 \times 3} \\ P^{\mathrm{T}} & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & Q\end{array}\right)$

$$
\begin{aligned}
P & \equiv\left(\begin{array}{lll}
\operatorname{Re}\left(\lambda_{6}+\lambda_{7}\right) & \operatorname{Im}\left(\lambda_{6}+\lambda_{7}\right) & \left.\lambda_{1}-\lambda_{2}\right) \\
K_{1} & \equiv\left(\begin{array}{ccc}
\lambda_{8}+\lambda_{9}-2 \operatorname{Re} \lambda_{11} & -2 \operatorname{Im} \lambda_{11} & -\operatorname{Re}\left(\lambda_{12}-\lambda_{13}\right) \\
-2 \operatorname{Im} \lambda_{11} & \lambda_{8}+\lambda_{9}+2 \operatorname{Re} \lambda_{11} & -\operatorname{Im}\left(\lambda_{12}+\lambda_{13}\right) \\
-\operatorname{Re}\left(\lambda_{12}-\lambda_{13}\right) & -\operatorname{Im}\left(\lambda_{12}+\lambda_{13}\right) & \lambda_{10}
\end{array}\right) \\
K_{2} & \equiv\left(\begin{array}{ccc}
0 & -\left(\lambda_{8}-\lambda_{9}\right) & +\operatorname{Im}\left(\lambda_{12}-\lambda_{13}\right) \\
\lambda_{8}-\lambda_{9} & 0 & -\operatorname{Re}\left(\lambda_{12}+\lambda_{13}\right) \\
-\operatorname{Im}\left(\lambda_{12}-\lambda_{13}\right) & \operatorname{Re}\left(\lambda_{12}+\lambda_{13}\right) & 0
\end{array}\right) \\
Q & \equiv\left(\begin{array}{ccc}
\lambda_{4}+\operatorname{Re} \lambda_{5} & \operatorname{Im} \lambda_{5} & \operatorname{Re}\left(\lambda_{6}-\lambda_{7}\right) \\
\operatorname{Im} \lambda_{5} & \lambda_{4}-\operatorname{Re} \lambda_{5} & \operatorname{Im}\left(\lambda_{6}-\lambda_{7}\right) \\
\operatorname{Re}\left(\lambda_{6}-\lambda_{7}\right) & \operatorname{Im}\left(\lambda_{6}-\lambda_{7}\right) & \lambda_{1}+\lambda_{2}-\lambda_{3}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Determine the maximal symmetry group

Continuous
symmetries

Accidental symmetries
 $$
\operatorname{in} V_{\phi}
$$

Take $V_{\mathrm{H} \phi}$ into consideration

Accidental symmetries in the entire potential

Accidental symmetries in 2HTM

The maximal symmetry group

Symmetry transformation

 in $\boldsymbol{\Phi}$-space $U \in \mathrm{U}(4)$$$
\begin{aligned}
& J^{1}=\frac{1}{2} \sigma^{3} \otimes \sigma^{3}, \quad J^{2}=\frac{1}{2} \sigma^{3} \otimes \sigma^{1}, \quad J^{3}=\frac{1}{2} \sigma^{0} \otimes \sigma^{2} \\
& J^{4}=\frac{1}{2} \sigma^{3} \otimes \sigma^{0}, \quad J^{5}=\frac{1}{2} \sigma^{1} \otimes \sigma^{2}, \quad J^{6}=\frac{1}{2} \sigma^{2} \otimes \sigma^{2}
\end{aligned}
$$

Majorana condition $\mathrm{C}^{-1} J^{a} \mathrm{C}=-\left(J^{a}\right)^{*}$

Lie algebra

$\left[J^{i}, J^{j}\right]=\mathrm{i} \epsilon^{i j k} J^{k}, \quad\left[J^{i+3}, J^{j+3}\right]=\mathrm{i} \epsilon^{i j k} J^{k+3}, \quad\left[J^{i}, J^{j+3}\right]=0, \quad(i, j, k=1,2,3)$
Isomorphic to $\mathrm{SU}(2) \otimes \mathrm{SU}(2)$ (Φ space)

Representation matrices T^{a} in the R^{i}-space

$$
\left(T^{a}\right)_{i j}=\operatorname{Tr}\left(\left[\Sigma^{i}, J^{a}\right] \Sigma^{j}\right), \quad(\text { for } i, j=1,2, \cdots, 9)
$$

Two SO(3) rotations

Accidental symmetries in 2HTM

Continuous symmetries

Accidental symmetries

Relations among coupling constants
Take the SO(4) symmetry for instance:
R^{i} : rank-two tensor $r^{i j} \quad M_{i}$: rank-two tensor $M_{i j} L_{i j}$: rank-four tensor $L_{i m, j n}$

One should require $M_{i j}=\left(K_{2}\right)_{i j}=0, \quad P=\mathbf{0}, \quad K_{1}=Q \propto \mathbf{I}_{3 \times 3}$

$$
\begin{aligned}
& m_{11}^{2}=m_{22}^{2}, \quad m_{12}^{2}=0, \quad \lambda_{1}=\lambda_{2}, \quad \lambda_{3}=2 \lambda_{1}-2 \lambda_{8} \\
& \lambda_{4}=\lambda_{10}=2 \lambda_{8}=2 \lambda_{9}, \quad \lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{11}=\lambda_{12}=\lambda_{13}=0
\end{aligned}
$$

Only three independent parameters m_{11}^{2}, λ_{1} and λ_{8} are left

Accidental symmetries in 2HTM

Z_{2} symmetries

 Acting a Z_{2} transformation on $\Phi, r^{i j}$ exhibits three patterns
(a) $\left(\begin{array}{lll}+ & + & - \\ + & + & - \\ - & - & +\end{array}\right)$
(b) $\left(\begin{array}{lll}- & - & - \\ + & + & + \\ - & - & -\end{array}\right)$
(c) $\left(\begin{array}{lll}+ & - & - \\ + & - & - \\ + & - & -\end{array}\right)$
(a) $\phi_{1} \rightarrow-\phi_{1}, \phi_{2} \rightarrow \phi_{2}$
(b) $\phi_{1} \rightarrow-\phi_{2}, \phi_{2} \rightarrow \phi_{1}$
(c) $\phi_{1} \rightarrow-\phi_{2}^{*}, \phi_{2} \rightarrow \phi_{1}^{*}$

Entire symmetry = Continuous symmetry $+Z_{2}$ symmetry

Symmetries of the full potential

Three different kinds of doublet-triplet-mixing terms Similar as $\phi_{i}^{*} \cdot \phi_{j}$

- $\left(H^{\dagger} H\right)\left(\phi_{i}^{*} \cdot \phi_{j}\right) \quad$ Maximal symmetry group SO(4)
- $\left(H^{\dagger} \mathrm{i} \sigma H\right) \cdot\left(\phi_{i}^{*} \times \phi_{j}\right) \quad$ Maximal symmetry group $O(3)^{i} \otimes O(2)^{j}$
- $H^{\mathrm{T}} \mathrm{i} \sigma_{2} \boldsymbol{\sigma} \cdot \phi_{i} H \quad$ Violate all the symmetries except $\left\{J^{1}, J^{2}, J^{3}, J^{4}\right\}$ SO(2) and Z_{2}

Accidental symmetries in 2HTM

Classification of all the accidental symmetries

Symmetry	Generators	m_{22}^{2}	m_{12}^{2}	λ_{2}	λ_{3}	λ_{4}	$\operatorname{Re} \lambda_{5}$	$\lambda_{6}=\lambda_{7}$	λ_{10}	$\operatorname{Re} \lambda_{11}$
$\mathrm{SO}(4)$	$J^{1,2,3,4,5,6}$	m_{11}^{2}	0	λ_{1}	$2 \lambda_{1}-2 \lambda_{8}$	$2 \lambda_{8}$	0	0	$2 \lambda_{8}$	0
$\mathrm{O}(3)^{i} \otimes \mathrm{O}(2)^{j}$	$J^{1,2,3,4}$	m_{11}^{2}	0	λ_{1}	$2 \lambda_{1}-\lambda_{4}$	-	0	0	$2 \lambda_{8}$	0
$\mathrm{O}(2)^{i} \otimes \mathrm{O}(3)^{j}$	$J^{1,4,5,6}$	m_{11}^{2}	0	λ_{1}	-	$2 \lambda_{8}$	0	0	$2 \lambda_{1}-\lambda_{3}$	0
	$J^{2,4,5,6}$	m_{11}^{2}	0	λ_{1}	-	$2 \lambda_{8}$	$-2 \lambda_{1}+\lambda_{3}+2 \lambda_{8}$	0	$2 \lambda_{1}-\lambda_{3}$	$+\lambda_{1}-\lambda_{8}-\lambda_{3} / 2$
	$J^{3,4,5,6}$	m_{11}^{2}	0	λ_{1}	-	$2 \lambda_{8}$	$+2 \lambda_{1}-\lambda_{3}-2 \lambda_{8}$	0	$2 \lambda_{1}-\lambda_{3}$	$-\lambda_{1}+\lambda_{8}+\lambda_{3} / 2$
$\mathrm{O}(3)^{j} \otimes Z_{2}$	$J^{4,5,6}$	m_{11}^{2}	0	λ_{1}	-	$2 \lambda_{8}$	$-2 \operatorname{Re} \lambda_{11}$	0	$2 \lambda_{1}-\lambda_{3}$	-
$\mathrm{O}(2)^{i} \otimes \mathrm{O}(2)^{j}$	$J^{1,4}$	-	0	-	-	-	0	0	-	0
	$J^{2,4}$	m_{11}^{2}	$\operatorname{Im} m_{12}^{2}$	λ_{1}	-	-	$+2 \lambda_{1}-\lambda_{3}-\lambda_{4}$	$\operatorname{Im} \lambda_{6}$	$2 \lambda_{8}-2 \operatorname{Re} \lambda_{11}$	-
	$J^{3,4}$	m_{11}^{2}	$\operatorname{Re} m_{12}^{2}$	λ_{1}	-	-	$-2 \lambda_{1}+\lambda_{3}+\lambda_{4}$	$\operatorname{Re} \lambda_{6}$	$2 \lambda_{8}+2 \operatorname{Re} \lambda_{11}$	-
$\mathrm{O}(2)^{i} \otimes \mathrm{O}(2)^{j} \otimes Z_{2}$	$J^{1,4}$	m_{11}^{2}	0	λ_{1}	-	-	0	0	-	0
	$J^{2,4}$	m_{11}^{2}	0	λ_{1}			$+2 \lambda_{1}-\lambda_{3}-\lambda_{4}$	0	$2 \lambda_{8}-2 \operatorname{Re} \lambda_{11}$	
	$J^{3,4}$	m_{11}^{2}	0	λ_{1}	-	-	$-2 \lambda_{1}+\lambda_{3}+\lambda_{4}$	0	$2 \lambda_{8}+2 \operatorname{Re} \lambda_{11}$	-
$\mathrm{SO}(2)^{j} \otimes\left(Z_{2}\right)^{2}$	J^{4}	m_{11}^{2}	0	λ_{1}	-	-	-	0	-	-
$\mathrm{O}(2)^{j} \otimes Z_{2}$	J^{4}	m_{11}^{2}	-	-	-	-	-	-	-	-
		-	-	λ_{1}	-	-	-	-	-	-
		-	0	-	-	-	-	0	-	-

Together with

$$
\operatorname{Im} \lambda_{5}=0, \lambda_{8}=\lambda_{9}, \operatorname{Im} \lambda_{11}=0, \lambda_{12}=\lambda_{13}=0
$$

In total eight distinct types of accidental symmetries

Summary

- Motivations to consider the 2HTM
-- Account for nonzero neutrino masses
-- Generate successful leptogenesis
- Classification of accidental symmetries in the 2HTM
-- The maximal symmetry group is $\mathrm{SO}(4)$
-- There are in total eight kinds of accidental symmetries
- Accidental symmetries are useful
-- Construct predictive models with less parameters
-- Investigate vacuum stability conditions and find out the vacuum solutions in the 2HTM
-- Study topological structures of the 2HTM

Thank you!

