

The upgraded LHCb experiment

- LHCb is a single-arm forward spectrometer redesigned for Run3:
 - about 95% of the sub-detectors is completely new
 - high-precision tracking and & vertexing
 - excellent PID & hadron separation
- Physics programme in practice far more general
 - Electroweak, Exotica, LLPs, Fixed-target, heavy ions
- Think of it as a more general purpose detector!

LHCb dataflow in Run3

- Fully-software High Level Trigger (HLT), 30 MHz event reconstruction (Daniel Cervenkov's talk "First performance of the real-time reconstruction at LHCb")
- Consists of two stages:
 - GPU-based trigger ⇒ calibrate in real-time (Cristina Agapopoulou's talk "LHCb HLT1: Tracking and vertexing at 30MHz with GPUs")
 - ② Full reconstruction in CPU-based trigger ⇒ 10 GB/s output (Miroslav Saur' talk "LHCb HLT2: Real-time alignment, calibration, and software quality-assurance")

[LHCB-FIGURE-2020-016]

Data Processing and Analysis (DPA) in Run3

- Increased data rate in Run3 poses significant Offline data processing challenges
- Coordination of these activities by DPA project:
 - software project on same level as detector ones
- DPA consists of 6 work-packages focused on specific tasks

[LHCB-FIGURE-2020-016]

DPA work-packages

WP1: Sprucing

- Offline, central data skimming and slimming
- Sharing of HLT2 framework
- Ensemble of "Sprucing selections" from physics WGs

WP2: Analysis productions

- Centralised nTupling via DIRAC production system
- Maximal automation
- Inbuilt testing/validation & analysis preservation

WP3: Offline analysis tool

Offline analysis

- application sharing HLT2/Sprucing toolsModern design used by
- Analysis Productions
- Thread safe application

WP4: Innovative analysis

- R&D for innovative analysis techniques to be adopted in the future
- Quantum computing

WP5: Legacy data & software

- Continued re-stripping of legacy Run1+2 data
- Maintenance of legacy software stacks fro Run1+2 data

WP6: Analysis preservation & Open data

- Release LHCb data to CERN Open Data
- Guidelines and tools for analysis preservation
- LHCb use of CERN's CAP and REANA

WP1: Sprucing

• In Run3 event persistency is customisable depending on the Physics involved

Event Size	Persisted objects	Saved to disk
4-16 kB	Only the signal candidate is saved, discarding the rest of the event	Yes. No further trimming of data is needed.
∼ 16 kB	The signal candidate is saved together with a custom set of other physics objects.	Yes. No further trimming of data is needed.
48-69 kB	The whole event information is retained.	No, saved to tape, not accessible to users. Move to disk only after a sprucing selection.

- Sprucing: further offline reduction/selection between tape and disk storage
 - same HLT2 selection framework

WP2: Analysis productions (AnaProds)

- After Sprucing/Turbo(SP) stage, data is saved to disk in Streams grouped according to the physics of interest
- In Run1+2 analysts created nTuples individually from data on disk using Ganga (a gateway to the Grid):
 - does not scale well for Run3
 - 1000s of faulty jobs can be submitted instantly
 - failed jobs re-submitted manually by user
 - time consuming, O(weeks) for Run1+2 tuples
- Analysis productions submit nTupling jobs centrally using the DIRAC transformation System
- Ensuring a fully automatic:
 - management of files grouping and job failures
 - test of job options
 - preservation of job details in LHCb bookkeeping/EOS
 - error interpretation/advice
 - visualization of the results on a web page

Flowchart for Run3

WP3: Offline analysis tools

- In Run1+2 nTuples used "TupleTools" from DaVinci (user analysis) application
 - Pro: easy to implement building blocks("TupleTools") to save variable branches cases
 - Cons: adds lots of redundant branches (often 500+ variables)
 ⇒ 500GB-10TB of data for only a single Run1+2 analysis!
- The whole DaVinci framework has been **re-optimised** for Run3:
 - modern thread-safe (ThOr) functors as in Sprucing used to create light-weight nTuples
 - consistency between Online and Offline selections/tools/algorithms
 - analyst has full control over which variables for which particles are persisted in nTuple
 - transparent configuration in dedicated YAML/JSON and python files
 - unit-testing routines for debugging and CI within the GitLab platform
 - AnaProds will run analysts' DaVinci options


```
pgrade_BdZKstarMuMu_ldst:
filenames:
- '/path_to_inputfile_1/file1.dst'
- '/path_to_inputfile_2/file2.dst'
qualifiers:
ddat_type: Upgrade
input_type: U5T
simulation: true
```

WP4: R&D Innovative analysis techniques

- Focus on exploitation of new analysis facilities with heterogeneous computing resources (GPU/CPU/FPGA)
- Worldwide LHC Computing Grid consists of \sim 1M CPU cores over 170 sites
 - main LHCb activities based on CPUs
 - supporting High Performance Computing centers providing large GPU resources
 - potential to utilise LHCb's HLT1 GPU farm during detector downtime
- Development to run LHCb payloads on GPUs
 - use advanced algorithms, as Generative Adversarial Networks (GANs), to train models describing LHCb sub-detector
 GPUs speed up GAN training, Ultra-fast-simulation
 - users using GPUs for complex amplitude analysis models with large statistics

• In Run3 LHCb will produce \sim 15PB of data on disk per year

 Simulation will require 90% of total offline CPU resources

 First investigation into use of Quantum Machine Learning for jet tagging (Davide Zuliani's talk "Quantum Machine Learning for b-jet identification")

WP6: Analysis preservation and open data

- In accordance with CERN Open data policy, part of the LHCb dataset is made available to general public
- Run3 LHCb data to be released on CERN Open Data portal
- Development of Open Data nTuple Wizard (not yet released and in production):
 - auto-generates options from intuitive user input
 - no prior knowledge of LHCb software is required
 - launches AnaProds & returns nTuple to user on CERN Open Data Portal

(Ryunosuke O'Neil's poster "An NTuple production service for accessing LHCb Open Data")

- Much smaller storage and bandwidth requirements on Open Data Portal
- Much easier accessing LHCb data

LHCb Analysis Preservation

WP6: Analysis preservation and open data

- Fully compatibility with Snakemake to preserve workflow and provenance tracking
- Capture all dependencies from CERN/LHCb docker containers
- Additional software environments configured from CVMFS
- Deploy analysis to REANA via GitLab to demonstrate preservation status
- Possibility to produce plots and final results documenting their provenance

LHCb Analysis Preservation

Summary

- LHCb for Run3 has a brand new detector & software
- LHCb will have to process data offline an order of magnitude larger than in Run2
- LHCb is progressing well to meet the Offline demands that Run3 will bring
- Most analyses will be based on turbo candidates
- Analysis workflow will change to cope with the high rates

