
MadFlow: automating Monte Carlo simulation on GPU
for particle physics

Juan M Cruz-Martinez
in collaboration with: S. Carrazza, G. Palazzo, M. Rossi, M. Zaro

[physics.comp-ph/2106.10279] Eur.Phys.J.C 81 (2021) 7, 656

PDFN 3
Machine Learning • PDFs • QCD

International Conference in High Energy Physics (ICHEP2022, Bologna)
July 2022

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 740006.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 1 / 15

https://inspirehep.net/literature/1869616

Outline

1 Introduction
Monte Carlo integrals
Parallelizing your code

2 GPU-enabled tools
VegasFlow, PDFFlow, MadFlow
Need for speed

3 Conclusions
Where to obtain the code

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 2 / 15

Introduction Monte Carlo integrals

Parton-level Monte Carlo generators

Predictions for observables (for instance for LHC phenomenology) often
require the numerical computation of the following integral:

O =

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

where:

f (x , q): Parton Distribution Function

|M|: Matrix element of the process

{pn}: Phase space for n particles.

J : Jet function for n particles to m.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 3 / 15

Introduction Monte Carlo integrals

Parton-level Monte Carlo generators ingredients

In practice that requires a number of (mostly independent) ingredients:

O =

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The numerics being handled numerically by
CPU-expensive Monte Carlo (MC)
generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 4 / 15

Introduction Monte Carlo integrals

The age of precision

MC algorithms are very convenient as they provide an estimate of the
integral and of the error:∫

ddxf (x⃗) ≃ 1
N

N∑
i=1

f (x⃗i) = I var = 1
N

(
1
N

N∑
i=1

f (x⃗i)
2 − I 2

)
However, the error decreases with the number of shots only as 1√

N
.

Despite techniques to
reduce the number of
shots necessary, the
O ≃ 1√

N
holds. π ≃ 3.2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 5 / 15

Introduction Monte Carlo integrals

The age of precision

MC algorithms are very convenient as they provide an estimate of the
integral and of the error:∫

ddxf (x⃗) ≃ 1
N

N∑
i=1

f (x⃗i) = I var = 1
N

(
1
N

N∑
i=1

f (x⃗i)
2 − I 2

)
However, the error decreases with the number of shots only as 1√

N
.

It can take forever

π ≃ 3.16

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 5 / 15

Introduction Parallelizing your code

Parallel computing to the rescue

MC integrations are made out of independent events, making them a
perfect target for massive parallelization. Exactly where GPU shines!

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Quick Example:
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1+···+x2

n

Every event is independent of all
other events!

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 6 / 15

Introduction Parallelizing your code

If it is so good, why are we not using GPUs everywhere?

At least in the field of theoretical calculations there are a few points
holding progress back

✗ Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

✗ Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

✗ Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 7 / 15

Introduction Parallelizing your code

If it is so good, why are we not using GPUs everywhere?

At least in the field of theoretical calculations there are a few points
holding progress back

✗ Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

✗ Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

✗ Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 7 / 15

Introduction Parallelizing your code

If it is so good, why are we not using GPUs everywhere?

At least in the field of theoretical calculations there are a few points
holding progress back

✗ Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

✗ Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

✗ Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 7 / 15

Introduction Parallelizing your code

Lack of Tools

Running on a CPU:

Indeed, you can usually only worry
about the part of the calculation that
you are interested in (say, a new
NNLO matrix element).
While you can find tools that solve
everything else (if you didn’t already
had that tools yourself!)

✓ PDF providers

✓ Phase space generators

✓ Integrator libraries...

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 8 / 15

Introduction Parallelizing your code

Lack of Tools

Running on a CPU:

Indeed, you can usually only worry
about the part of the calculation that
you are interested in (say, a new
NNLO matrix element).
While you can find tools that solve
everything else (if you didn’t already
had that tools yourself!)

✓ PDF providers

✓ Phase space generators

✓ Integrator libraries...

Cuba

RAMBO

fastjet

madgraph

LHAPDF

Root

result!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 8 / 15

Introduction Parallelizing your code

Lack of Tools

Running on a GPU:

There is no such tool set yet

so it needs to be written from
scratch

?????

?????

?????

?????

?????

?????

result!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 8 / 15

GPU-enabled tools VegasFlow, PDFFlow, MadFlow

Filling up the box: tools for modern computation

The goal is to provide tools that can facilitate the transition:

VegasFlow: Monte Carlo library with different algorithms that can be
used in any device: single-threaded and multi-threaded CPUs or
AMD/nvidia GPUs.

PDFFlow: Bulk PDF interpolation, specially well suited for parallel
calculation where sequential steps can harm performance.

- Python and TF-based engine.

- Compatible with other languages:
Cuda, C++, Rust, Fortran

- Seamless CPU and GPU computation
out of the box (develop in a laptop,
deploy in a cluster)

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 9 / 15

GPU-enabled tools VegasFlow, PDFFlow, MadFlow

MadFlow: a madgraph interface

An example of what can be obtained is MadFlow: Taking advantage of
Madgraph’s ALOHA we produce tensorflow-versions of the matrix
elements.

The TensorFlow library contains
all necessary kernels to run the
matrix elements in parallel.

Everything can run in both a
CPU or a GPU

Perfect compatibility ✓

0

5

10

15

20

25

d
σ
/d
p t

[f
b

/G
eV

]

Cross section differential on pt for gg → tt̄

MG5 aMC@NLO

MadFlow

0 50 100 150 200 250 300 350 400

pt [GeV]

0.94

0.96

0.98

1.00

1.02

1.04

1.06

R
at

io
to

M
G

5
aM

C
@

N
L

O

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 10 / 15

GPU-enabled tools VegasFlow, PDFFlow, MadFlow

MadFlow in different devices

We see speed-ups for both complex and simple processes

0 5 10 15
Time (s)

i9-10885H 8 cores 32GB
AMD 2990WX 32 cores 128GB

i9-9980XE 18 cores 128GB
E5-2698 20 cores 256GB

AMD EPYC 7742 64 cores 2TB
NVIDIA Quadro T2000 4GB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 gg tt (3 diagrams)

0 250 500 750 1000 1250 1500
Time (s)

AMD 2990WX 32 cores 128GB
i9-9980XE 18 cores 128GB

E5-2698 20 cores 256GB
AMD EPYC 7742 64 cores 2TB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events
 pp ttgg (267 diagrams)

While having the whole thing in TensorFlow gives us great flexibility (the
exact same code is running in all those systems) we might want to forfeit
some flexibility in exchange for device-based optimization.

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 11 / 15

GPU-enabled tools Need for speed

Interfacing with CUDA

Main goal: flexibility and ease-of-use, that also means one can also make
life harder for oneself... for a benefit.

✗ Limited to a single
architecture

✗ Requires a transpiler to
the “low”-level language
of choice

✓ More efficient memory
management and performance

✓ We can limit this more
complicated step only to the
bottlenecks

0 5 10 15

g g > t t~ g g

p p > t t~ g

g g > t t~ g

g g > t t~

200 220Time (s)

Titan V 12 GB, Tree-level 1M events
Generic code (tf)
Device specific (Cuda)

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 12 / 15

Conclusions Where to obtain the code

Open source for HEP

Where to obtain the code

Vegasflow, PDFFlow and MadFlow are open source and can be found
at the N3PDF organization repository github.com/N3PDF (alongside
other projects by the group)

How to install

They can all easily be installed with pip:

~$ pip install vegasflow pdfflow madflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io
PDFFlow: pdfflow.rtfd.io
MadFlow madflow.rtfd.io

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 13 / 15

https://github.com/N3PDF
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io
https://madflow.readthedocs.io

Conclusions The end

Summary

Monte Carlo simulations (fixed-order and otherwise) are great targets
for parallelization on hardware accelerators.

→ Despite being more than competitive with CPU not many groups are
working on it! (see talk yesterday by A. Valassi)

✗ Maybe we still have a big entry barrier?

✓ VegasFlow, PDFFlow and MadFlow provide a framework to run in
any device.

✓ Generate all the different pieces (ME, PS, PDFs, integration
algorithm) needed for fixed order calculations.

✓ Remove all entry barrires while still leaving space for further
optimization

Available open source

the code for madflow is available at
https://github.com/n3pdf/madflow

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 14 / 15

https://github.com/n3pdf/madflow

Conclusions The end

Thanks!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 15 / 15

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

I =
1

N

∑
f (x⃗i)

(the function f (x⃗) might be
arbitrarily complicated)

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 16 / 15

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

I =
1

N

∑
f (x⃗i)

(the function f (x⃗) might be
arbitrarily complicated)

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 16 / 15

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 16 / 15

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 17 / 15

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 17 / 15

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

Juan Cruz-Martinez (University of Milan) MadFlow ICHEP2022 17 / 15

	Introduction
	Monte Carlo integrals
	Parallelizing your code

	GPU-enabled tools
	VegasFlow, PDFFlow, MadFlow
	Need for speed

	Conclusions
	Where to obtain the code
	The end

