
Hough transform implementation on FPGA 

for event filtering of HL-LHC

Kazuki Todome (INFN Bologna)

Fabrizio Alfonsi (INFN Bologna)

On behalf of the ATLAS collaboration

International Conference on High Energy Physics 2022 

8th Jul 2022 Bologna



Introduction – ATLAS in HL-LHC

 Challenging environment of HL-LHC (7.5x luminosity)

 More collisions (40 to 200 pileup) 

 Higher granularity detectors → More hit clusters

 Data taking trigger using calorimeter + Muon 

spectrometer @ 1 MHz

 Event Filtering system skims the events using data 

including Inner Tracker (ITk) down to 10 kHz

 Large number of cluster evaluation in short time

 Event Filter system works as follows:

1. Construct online clusters

2. Group clusters which may construct track:

“Pattern Recognition” (Scope of this talk)

3. Perform online fitting of the track

4. Evaluate fitted track for the event skim

 See Viviana’s talk (link)

 We need to reduce fitting process time

~ possible combination of clusters

2022/7/8 ICHEP2022 2

https://agenda.infn.it/event/28874/contributions/170199/


 Inputs: a bunch of clusters with format of ALTAS geometry {(r𝑙 , 𝜙𝑙 , 𝜂𝑙 , 𝑙 =layer)}

 Idea of Hough Transform: Convert cluster valuables to phase space of track (
𝑞𝐴

𝑝𝑇
, 𝜙0)

using relation in the transverse plane: 
𝑞𝐴

𝑝𝑇
=

𝜙0−𝜙𝑙

r𝑙

 Steps of Hough Transform

1. Draw a line for each cluster, on HT plane layer by layer (accumulator)

2. Search more probable track parameters (“Road”)

3. Output all clusters associated with the found road

→ extract only minimum clusters

 Requirements on Hough Transform in Event Filtering

 Low latency

 Hardware based, like FPGA implementation is ideal 

 High efficiency/Low number of roads and clusters

 Low resource (critical!) → serval logic blocks in a board

 Reduce number of boards and power consumption

Introduction – Hough Transform

2022/7/8 ICHEP2022 3

ATLAS (x-y)

geometry

Hough Transform 

plane

(accumulator)

“Road”

A is constant value

In the ATLAS, 

A=3 × 10−4 GeV/mm

r𝑙

𝜙𝑙



Architecture overview

 Most resource-consuming block “A” takes 400 k LUTs 

~ more than 90% of available resources (VC709 case)

2022/7/8 ICHEP2022 4

A

BC



Previous implementation and limitation

 Previous way of implementation

 Mathematically evaluate 
𝑞𝐴

𝑝𝑇
=

𝜙0−𝜙𝑙

r𝑙
for given (r𝑙 , 𝜙𝑙)

 Point the accumulator bin to be fired

 Due to the large possibility of the operations, this block consumes a lot of resources

 In contrast to the mathematical operation cost in firmware, it is not a high cost for software

 But parallel process, such as finding roads, is a high cost for software

2022/7/8 ICHEP2022 5

(r𝑙 , 𝜙𝑙)

On firmware



How to reduce resource utilization

 Idea: perform all possible mathematical operations in software, then implement results in firmware

1. For a each (
𝑞𝐴

𝑝𝑇
, 𝜙0) bin, evaluate the possible range of (r𝑙 , 𝜙𝑙) to fire the given bin in software

 Effect of r𝑙 fluctuation is small enough → evaluate only range of 𝜙𝑙

 This step takes more than a few hours → software itself cannot be implemented as an online system

2. On firmware, just check if the input 𝜙𝑙 is in the range given by software for each (
𝑞𝐴

𝑝𝑇
, 𝜙0) bin

 Parallel process: FPGA has strong advantages

 Some (
𝑞𝐴

𝑝𝑇
, 𝜙0) bins have exactly same 𝜙𝑙 range → additional resource reduction is possible

2022/7/8 ICHEP2022 6

On software

𝜙𝑙

evaluate

range of (r𝑙 , 𝜙𝑙)

to fire a (
𝑞𝐴

𝑝𝑇
, 𝜙0) bin

(
𝑞𝐴

𝑝𝑇
=

𝜙0−𝜙𝑙

r𝑙
)

On firmwarePossible range



Test setup

 Accumulator size: 

(
𝑞𝐴

𝑝𝑇
, 𝜙0)= ([-3×10-3, 3×10-3] /mm in 216 bins, [0.3, 0.5] in 64 bins) 

 Test dataset: single muon events under 200 of the pileup events 

interpreted as 18 bits of 𝜙𝑙 for each layer

 Used layers: subset of ITk layers (in total 8)

 Used board: Xilinx Virtex-7 VC709 (433k LUTs, 866k FFs available)

 Consider “z-slice”: 

 At a particular r position, every track passes a position of z

 By limiting the z position, 

the range of targeted tracks is 

also limited

 Select only clusters that may 

compose such limited tracks

 We assume 19 z-slice

2022/7/8 ICHEP2022 7

Single muon

200 pileup

Too many 

roads!

Z-slice map (case of 6 slices)

200 pileup

+z-slice

(1/19-slice)



First evaluation: Software base

 Purpose: evaluate the performance with operations that are logically compatible with firmware idea

 Procedure: 

1. Evaluate the range of 𝜙𝑙 to fire each (
𝑞𝐴

𝑝𝑇
, 𝜙0) bin and save this, independently from the test dataset

 Two ideas were tested: r is fixed to the center, or scan all possible r range

2. Based on saved file, generate accumulator for each single muon + 200 pileup file

3. Extract roads and associated clusters

4. Compare the performance and resource utilization with the original implementation 
and purely mathematical operations (without digitalization of input 𝜙𝑙)

 Results

 Fix r option

 LUTs utilization has been reduced to less than 8% of previous implementation

 Inefficiency is slightly increased

 Demonstrated in the next slide

 Scan r option

 LUTs utilization is ~¼ of previous implementation

 Inefficiency is quite low

 #fit and #road are quite large due to duplicated
roads

 Could be reduced by duplication remover

2022/7/8 ICHEP2022 8

Previous math Fix r Scan r

#LUTs 400k --- 31k 108k

<#fit> --- 2375 2709 292k

<#road> --- 242 270 4881

Inefficiency --- 4.5% 6.5% 0.36%



Second evaluation: Firmware implementation

 Evaluated range of 𝜙𝑙 is called by 
firmware code and implemented as 
LUTs

 Confirmed that the implemented block 
works as designed by software

 All blocks work in 250 MHz clk domain

 For the concerned block “A”, 
implementation is achieved with 
exactly the expected number of LUTs

 The size of resources consumed by 
block “A” became compatible with 
ones consumed by block “B”

 Space for optimization in the block "B“

2022/7/8 ICHEP2022 9



Summary

 In the challenging environment of HL-LHC, “Pattern Recognition” is one of the important 

functions in Event Filtering to reduce total processing time and Hough Transform is one of the 

promising algorithms for this function

 In the previous studies of Hough Transform, the function block to build accumulator consumes 

400 k LUTs, which is more than 90% of available resources

 By pre-calculating logic in software, the resource utilization of the concerned block has been 

reduced to less than 8% of the original implementation while keeping its inefficiency low enough

 This idea is feasible also for any other mathematical operations on the firmware to reduce resource 

utilization

 The pre-calculated logic has been implemented on the firmware targeting Xilinx Virtex-7 VC709 

working with 250 MHz CLK

 The implemented block works as designed 

 Plans for possible improvement: 

 Optimization of other logic blocks

 Investigate a better method to define the range of 𝜙𝑙 for each accumulator bin 

2022/7/8 ICHEP2022 10



Backup

2022/7/8 ICHEP2022 11



Detailed architecture overview

A) Convert input clusters (r𝑙 , 𝜙𝑙) to accumulator (
𝑞𝐴

𝑝𝑇
, 𝜙0)

B) Search “Road” position

C) Wrap up all clusters associated with the found road and output them

 Most resource consuming block “A” takes 400 k LUTs ~ more than 90% of available resource (VC709 case)

2022/7/8 ICHEP2022 12

A

B

C


