Triggerless data acquisition system for the AMBER experiment

V. Frolov, S. Huber, V. Jarý, I. Konorov, A. Květoň, D. Levit, J. Nový, D. Steffen, B. M. Veit, M. Virius, <u>Martin Zemko</u>

AMBER DAQ group and CERN

ICHEP 2022, 8th July 2022

CZECH TECHNICAL UNIVERSITY IN PRAGUE

AMBER Experiment

- AMBER is a fixed target experiment located at the M₂ beam line of the CERN SPS
- It is the successor of the COMPASS experiment
- It has been approved by the CERN research board in 2021
- Its first pilot run took place in 2021
- Next test run will follow this year
- First main objective of the freerunning DAQ is to measure the proton radius on an active hydrogen time projection chamber (TPC) with a muon beam

Physics programmes and goals

- High pressure time projection chamber (TPC) filled with hydrogen (up to 20 bars) is used as an active target
- Muon scattering angle calculated from four tracking detectors (fast detectors)
- Slow detectors (e.g. hydrogen TPC) have very long drift time (120 µs)
- Merging slow detectors with fast detectors → streaming DAQ

Triggerless data acquisition

Structured scheme of the acquisition system

- AMBER uses a triggerless data acquisition system → continuous readout of detectors
- High level filter (HLT) is used instead of a low-level trigger logic \rightarrow more time for the data reduction
- General reduction scheme

 → any detector can
 participate in the filter
- To achieve our goal of 10 GB/s, we need high performance software and hardware

Readout chain

- At the first stages, FPGA hardware modules process the data and perform multiplexing and time-slice building (high uptime of 98%)
- Subsequently, data are processed by readout cards accompanied by readout software
- Filtering software (HLT) performs the final data filtration
- There are several parallel streams at each level → high scalability

Triggerless acquisition system (AMBER)

Data structure

- We developed a custom data protocol consisting of several layers of encapsulated data
- At the lowest level, data are divided into images → data from a single detector within a given interval (depends on detector time response)
- Images are incorporated into time slices → data from all detectors within a specified time interval, time-based equivalent to events, independent elementary processing units
- Slice duration is a parameter for optimization O(1ms) → trade-off between time slice size and data size fluctuation (stable data rate)

	Spill									
		Slice 1	D(1 <i>m</i> s)		Slice 2	O(1 <i>m</i> s)			Slice N	O(1 <i>m</i> s)
Very slow detectors (TPC,)	Image 1 50µs		Image 20 50µs	Image 1 50µs		Image 20 50µs		Image 1 50µs		image 20 50µs
Slow detectors (DCs, W45,)	Image 1 500ns		Image 2000 500ns	Image 1 500ns		Image 2000 500ns		Image 1 500ns		Image 2000 500ns
Fast detectors (Hodoscopes, SciFis,)	Image 1 100ns Image 2 100ns Image 3 100ns Image 4 100ns Image 5 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns Image 9999 100ns Image 10000100ns	Image 1 100ns Image 2 100ns Image 3 100ns Image 4 100ns Image 5 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns Image 9999 100ns Image 10000100ns		Image 1 100ns Image 2 100ns Image 3 100ns Image 4 100ns Image 5 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns Image 9999 100ns Image 9999 100ns Image 10000100ns

Triggerless data protocol

HLT framework

- HLT is a high-performance distributed computational framework based on a master-slave architecture
- Slices are processed on many nodes and threads in parallel
- Written in C++ and and the Qt framework
- Provides advanced libraries for inter-process communication, networking, databases, filter algorithms, etc.
- Algorithms are modular and highly optimized (possibility to implement new filter algorithms)

Filtering steps

- Filtering application is the heart of the HLT framework
- Each thread / node repeats the same sequence of steps filtering algorithm:
 - 1. Extraction of detector information for filter decision
 - 2. Data used for filtration are decoded and analysed in the time dimension
 - 3. Afterwards, their spatial properties are taken into account and a binary decision is made keep the data or drop them
 - 4. Finally, the decision is applied on raw data data size is reduced
 - 5. Data are written to an output file

Continuous time calibration

- HLT filter processes and decodes "trigger hits"→ they must be aligned in time
- HLT compensates for time drifts within a single image (see the next slide)
- If hits are shifted more than a single image width, recalibration is needed
- Newly calculated coefficients are loaded back to frontend cards

Identification of event candidates

- For the timing analysis, we use a modified version of the Haar wavelet decomposition – shifted wavelet decomposition
- Sum of adjacent data fields is a sufficient aggregator for event identification
- Our implementation uses 8 levels to achieve the desired resolution and time range
- Output of the SWT algorithm is a list of socalled event candidates

Data reduction

- If an event candidate is identified in the data, two consecutive images of each detector are saved
- Last image of a slice is also copied to the next slice in order to prevent edge cases
- All images that are not associated with any event candidates are removed
- Eventually, HLT appends a list of valid event candidates at the end of slice

	Event candidate 1						Event candidate N						
					Spill								
	Slice 1 O(1ms)			Slice 2 O(1ms)						Slice N O(1ms)			
Very slow detectors (TPC,)	lmage 1 50µs		Image 20 50µs		lmage 0 50µs		Image 20 50µs			mage 0 50µs		image 20 50µs	
Slow detectors (DCs, W45,)	Image 1 500ns		Image 20 500ns	00	Image 0 500ns		Image 2000 500ns		lm (age 0 :00ns		Image 2000 500ns	
Fast detectors (Hodoscopes, SciFis,)	Image 1 100ns Image 2 100ns Image 3 100ns Image 4 100ns Image 5 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns	Image 10000100ns	Image 0 100ns Image 1 100ns Image 2 100ns Image 3 100ns Image 4 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns Image 9999 100ns Image 10000100ns		Image 0 100ns Image 1 100ns	Image 2 100ns Image 3 100ns Image 4 100ns		Image 9996 100ns Image 9997 100ns Image 9998 100ns Image 9999 100ns Image 10000100ns	

Priciple of reducing data size

HLT benchmarks

- We used the emulation tool to test, validate, and measure HLT performance
- HLT filter was tested with artificial data in a limited scope including two servers and simple filtration algorithms
- Test setup:
 - AMD EPYC (16 cores, 32 threads)
 - 128GB DDR4 memory
- Processing rate depends on:
 - number of threads,
 - used filter algorithm,
 - number of projections (planes),
 - slice duration, etc.

Benchmark of HLT filtering algorithm 8 projections 3000 41 projections 56 projections 72 projections 2500 Data rate [MB/s] 12000 12000 1000 Goal 500 26 24 28 30 32 8 10 12 14 16 18 20 22 Thread count [#]

Summary

- We developed fundamental components for the triggerless DAQ system of the new AMBER experiment at CERN
- System introduced the custom data protocol and the high-level filtering framework replacing the low-level trigger
- We created the HLT framework
 - We developed methods for continuous time calibration of detectors
 - Performance of the high level trigger has been evaluated and measured
- Reduced system will be tested in the upcoming test run at the end of 2022

Thank you for your attention

Spares

Simulation chain

- We needed some ways of testing the HLT software and verification of its functionality
- We developed a DAQ emulation tool called
 Data Generator
- It transforms Monte Carlo events into raw data
- Data Generator parses Monte Carlo events, simulates detector and frontend responses, and produces data stream in the new DAQ format
- At the output, we also obtain links to original Monte Carlo events used for validation

Individual steps of the simulation chain