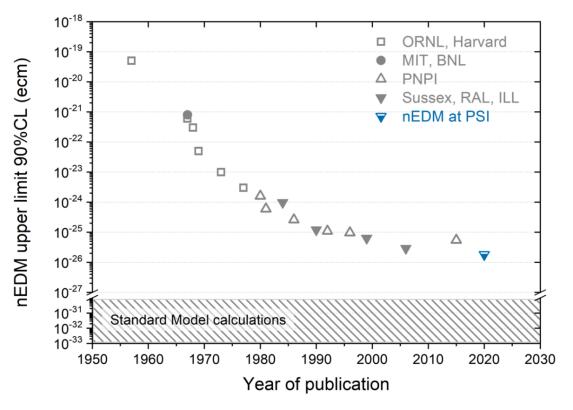
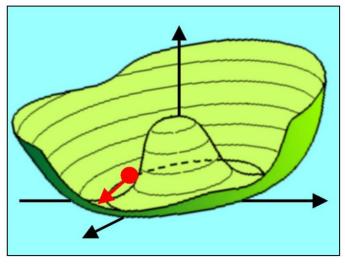
A new method with minimized systematic error sources to detect axion dark matter in storage rings using an rf Wien filter

On Kim¹ and Yannis K. Semertzidis^{1,2}


¹Institute for Basic Science, Center for Axion and Precision Physics Research ²Korea Advanced Institute of Science and Technology, Physics Department

2022 July 7th 41th International Conference on High Energy Physics

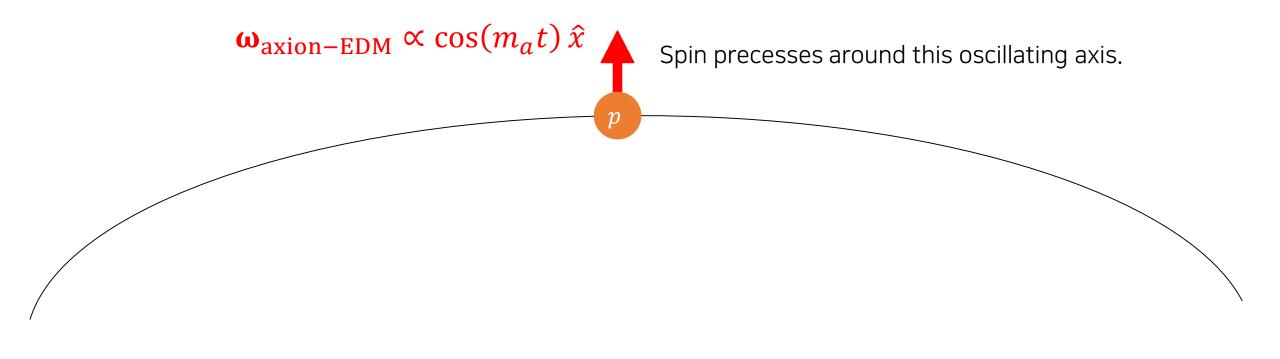
Axion Dark Matter


• Strong *CP* problem: why $\theta_{CP} \ll \mathcal{O}(1)$? $d_n \sim \bar{\theta} \times 10^{-16} e \cdot cm$ $\bar{\theta} < 5 \times 10^{-11}$

C. Abel et al. Phys. Rev. Lett. 124, 081803 (2020)

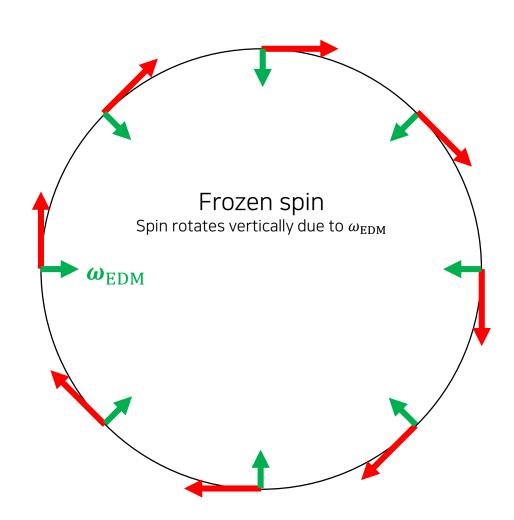
• Peccei-Quinn theory Phys. Rev. Lett. 38, 1440 (1977)

 $U_{PQ}(1)$ spontaneous symmetry breaking induces a dynamical pseudoscalar field: Axion


Georg Raffelt

• Dark Matter (DM) candidate

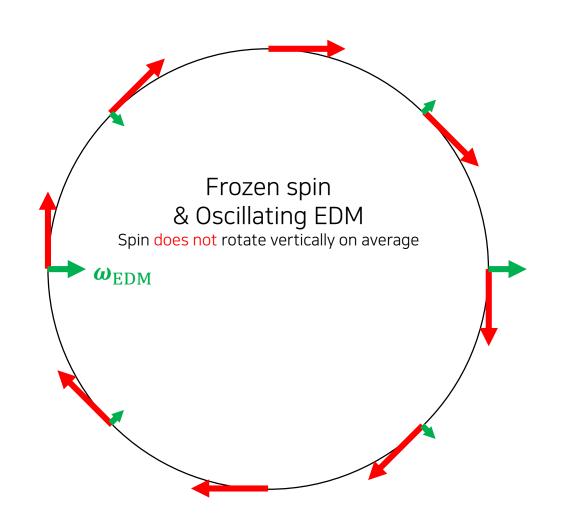
Axions or Axion-Like Particles (ALPs) can constitute some or all DM \Rightarrow Axion-like dark matter


Storage ring probes of axion DM

• Couplings with axion-like DM through nucleon EDM P. Graham and S. Rajendran, PRD 88, 035023 (2013) • ALP DM-EDM $(g_{aN\gamma}a\hat{\sigma}_N \cdot \mathbf{E}) \Rightarrow$ oscillating EDM at m_a . For the QCD axion: $d_N^{\text{QCD}} \approx 10^{-34} \cos(m_a t) \ e \cdot \text{cm}$.

Oscillating EDM

- How should we detect it?
- First, review the frozen spin method for the static *d*.



Oscillating EDM

- How should we detect it?
- What if $d = d_0 \cos(m_a t)$ oscillates? (used an extreme case for illustration)

$$\boldsymbol{\omega}_{a} \approx -\frac{q}{m} \begin{bmatrix} G\mathbf{B} - \left(G - \frac{1}{\gamma^{2} - 1}\right) \frac{\boldsymbol{\beta} \times \mathbf{E}}{c} + \frac{\eta}{2} \left(\frac{\mathbf{E}}{c} + \boldsymbol{\beta} \times \mathbf{B}\right) \end{bmatrix}$$

MDM $(g - 2 \text{ precession})$
In-plane

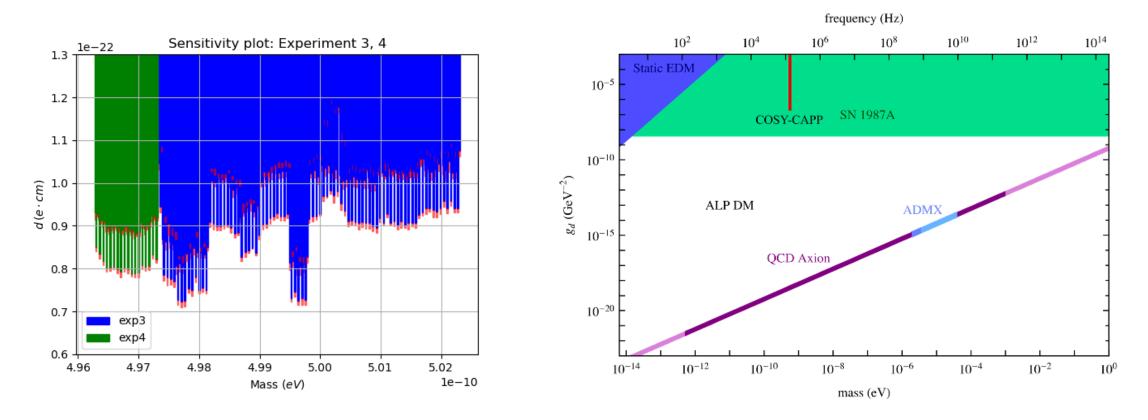
$$\mu = g \frac{q}{2m} S, \qquad d = \eta \frac{q}{2mc} S \qquad G \equiv \frac{g - 2}{2}$$

Oscillating EDM

- How should we detect it?
- Why don't we make spin precess in the ring plane at the same frequency? (used an extreme case for illustration)

$$\omega_{a} \approx -\frac{q}{m} \left[G\mathbf{B} - \left(G - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \mathbf{E}}{c} + \frac{\eta}{2} \left(\frac{\mathbf{E}}{c} + \boldsymbol{\beta} \times \mathbf{B} \right) \right]$$

$$MDM \left(g - 2 \text{ precession} \right)$$


$$In-plane \qquad Out-of-plane$$

$$\mu = g \frac{q}{2m} S, \qquad d = \eta \frac{q}{2mc} S \qquad G \equiv \frac{g - 2}{2}$$

$$\mu = g \frac{q}{2m} S, \qquad d = \eta \frac{q}{2mc} S \qquad G \equiv \frac{g - 2}{2}$$

First axion DM search in a storage ring

- IBS-CAPP and COSY collaborated to conduct a precursor experiment at COSY in 2019.
 - Total measurement time: ~4 days.
 - Total statistics: 2M hits.
- Preliminary analysis (Seung Pyo Chang (IBS-CAPP)): $d \leq 10^{-22} e \cdot cm$ at $m_a \approx 0.5$ neV.

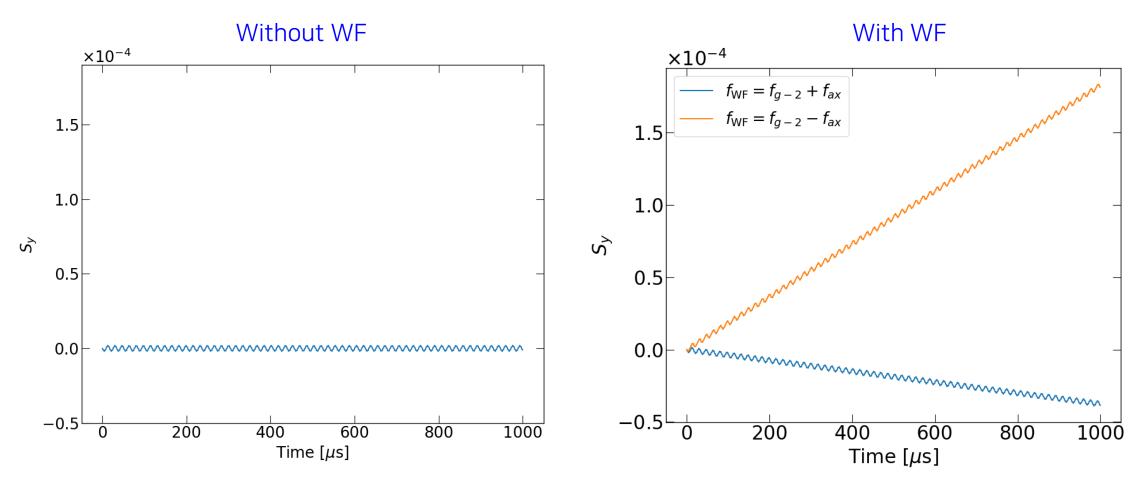
A new method using an rf Wien filter

- The resonance condition of the previous method is: $\omega_{MDM} (\equiv \omega_{g-2}) = m_a$.
- Not very practical to "manipulate" ω_{g-2} for scanning m_a , because one needs to change the momentum accordingly ($p = Br_0$ for a magnetic ring).
- New idea is to add another knob to tune the resonance with an rf field inside the storage ring. $|\omega_{g-2} \pm \omega_{rf}| = m_a$
- Natural candidate is an rf Wien filter (WF) which exerts no Lorentz force on the beam by design.

$$\mathbf{E}_{\mathrm{WF}} = E_0^{\mathrm{WF}} \cos(\omega_{\mathrm{WF}}t + \phi_{\mathrm{WF}})\hat{e}_x,$$

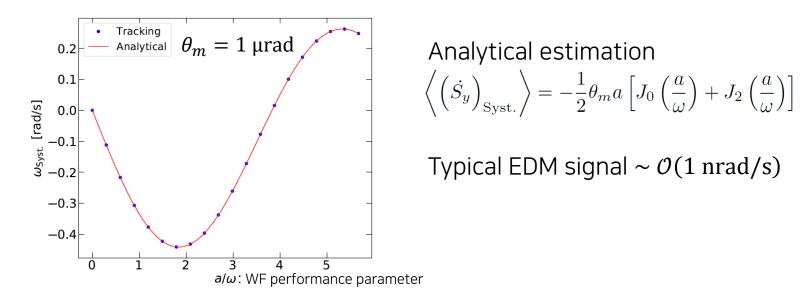
$$\mathbf{B}_{\mathrm{WF}} = \frac{E_0^{\mathrm{WF}}}{\beta c} \cos(\omega_{\mathrm{WF}}t + \phi_{\mathrm{WF}})\hat{e}_y$$

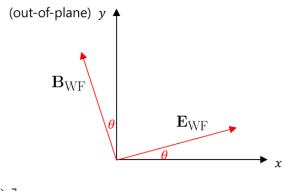
$$|\omega_{g-2} \pm \omega_{\mathrm{WF}}| = m_a$$


A new method using an rf Wien filter

Putting all possibilities together		Axion-induced EDM search in storage rings		
5	5			
Method	srEDM	srEDM + WF	srAxionEDM	srAxionEDM + WF
Measurement target	$d_{ m DC}$	$d_{ m DC}$	$d_{ m AC}$	$d_{ m AC}$
Resonance condition	$\omega_{g-2} = 0$	$\omega_{g-2} = \omega_{\rm WF}$	$\omega_{g-2} = \omega_{\mathrm{axion}}$	$\omega_{g-2} = \omega_{\mathrm{axion}} \pm \omega_{\mathrm{WF}} $
Spin vertical slope (ω_d)	$\frac{d_{\rm DC}}{s\hbar}E^*$	$\frac{d_{\rm DC}}{s\hbar}E^*C_{\rm WF}$	$rac{d_{ m AC}}{2s\hbar}E^*$	$\frac{d_{\rm AC}}{2s\hbar}E^*C_{\rm WF}$
References	PRL 93 , 052001 (2004) RSI 87 , 115116 (2016)	PRAB 16 , 114001 (2013) PRAB 23 , 024601 (2020)	PRD 99 , 083002 (2019) EPJC 80 , 107 (2020)	PRD 104 , 096006 (2021)
	Frozen-spin	Highly constrained by systematic effect	Challenging to change ω_{g-2}	1. Practical way to scan m_a by tuning $\omega_{\rm WF}$.

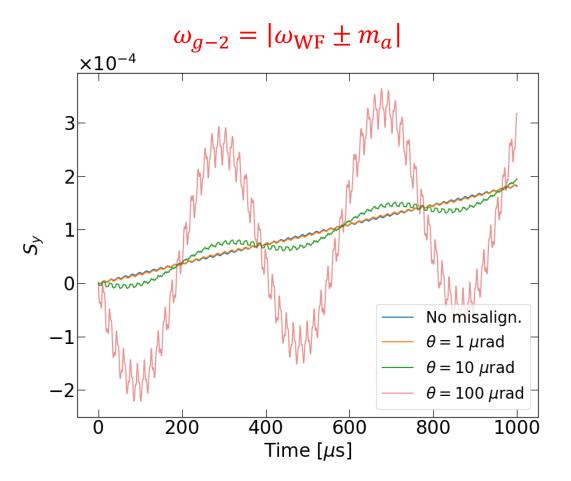
- tuning ω_{WF} . 2. Avoid systematic effects by carefully tuning ω_{WF} .
 - 3. No need to build a new storage ring.

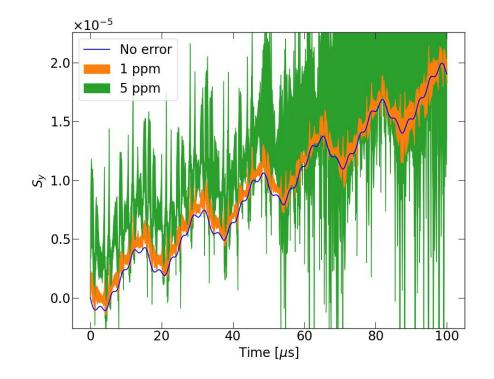

Numerical verification


- High precision spin tracking simulation
- No approximation in Lorentz force & T-BMT equations. Used $f_{g-2} \approx 120$ kHz and $f_{axion} = 180$ kHz as an example.

Systematic effects

- "Frozen spin" suffers from field errors $(B_r, E_v) \Rightarrow$ And beautifully resolved by CW/CCW beam, hybrid & symmetric ring design Z. Omarov et al., PRD 105, 032001 (2022)
- When we drop the frozen-spin and those dc field errors are not the problem. But an rf field errors can be critical, for instance from small misalignments of the WF.
- The systematic "false EDM" signal is huge.

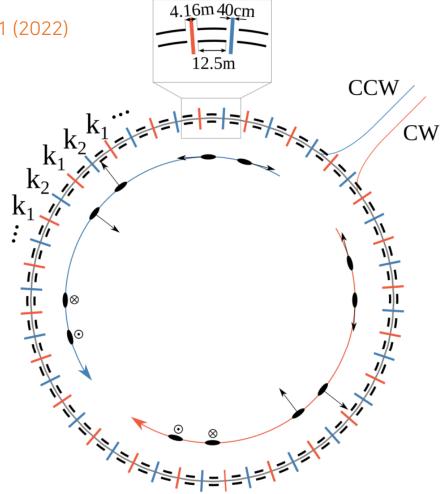



Typical EDM signal $\sim O(1 \text{ nrad/s})$

Systematic effects

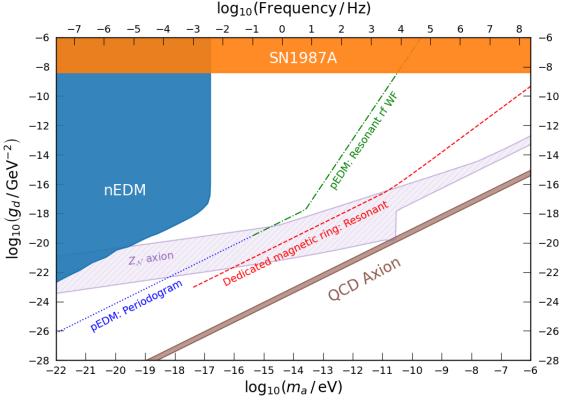
 New method using the WF vetoes the described systematic effect by using distinct resonant frequency.

• Typical field errors of $\mathcal{O}(1 \text{ ppm})$ also turned out not significant.


• In general, if there appears a signal, one can tell if it's a true or false signal by readjusting $\omega_{WF} \& \omega_{g-2}$ targeting the same m_a .

Snowmass proposal: pEDM experiment

- Comprehensive studies are underway to realize the pEDM experiment.
 - Snowmass proposal arXiv:2205.00830
 - Symmetric-hybrid lattice design Z. Omarov et al., PRD 105, 032001 (2022)


The storage ring proton EDM experiment

Jim Alexander⁷, Vassilis Anastassopoulos³⁶, Rick Baartman²⁸, Stefan Baeßler^{39,22}, Franco Bedeschi¹⁹, Martin Berz¹⁷, Michael Blaskiewicz⁴, Themis Bowcock³³, Kevin Brown⁴, Dmitry Budker^{9,31}, Sergey Burdin³³, Brendan C. Casey⁸, Gianluigi Casse³⁴, Giovanni Cantatore³⁸, Timothy Chupp³⁴, Hooman Davoudiasl⁴, Dmitri Denisov⁴, Milind V. Diwan⁴, George Fanourakis²⁰, Antonios Gardikiotis^{30,36}, Claudio Gatti¹⁸, James Gooding³³, Renee Fatemi³², Wolfram Fischer⁴, Peter Graham²⁶, Frederick Gray²³, Selcuk Haciomeroglu⁶, Georg H. Hoffstaetter⁷, Haixin Huang⁴, Marco Incagli¹⁹, Hoyong Jeong¹⁶, David Kaplan¹³, Marin Karuza³⁷, David Kawall²⁹, On Kim⁶, Ivan Koop⁵, Valeri Lebedev^{14,8}, Jonathan Lee²⁷, Soohyung Lee⁶, Alberto Lusiani^{25,19}, William J. Marciano⁴, Marios Maroudas³⁶, Andrei Matlashov⁶, Francois Meot⁴, James P. Miller³, William M. Morse⁴, James Mott^{3,8}, Zhanibek Omarov^{15,6}, Cenap Ozben¹¹, SeongTae Park⁶, Giovanni Maria Piacentino³⁵, Boris Podobedov⁴, Matthew Poelker¹², Dinko Pocanic³⁹, Joe Price³³, Deepak Raparia⁴, Surjeet Rajendran¹³, Sergio Rescia⁴, B. Lee Roberts³, Yannis K. Semertzidis ^{*6,15}, Alexander Silenko¹⁴, Amarjit Soni⁴, Edward Stephenson¹⁰, Riad Suleiman¹², Michael Syphers²¹, Pia Thoerngren²⁴, Volodya Tishchenko⁴, Nicholaos Tsoupas⁴, Spyros Tzamarias¹, Alessandro Variola¹⁸, Graziano Venanzoni¹⁹, Eva Vilella³³, Joost Vossebeld³³, Peter Winter², Eunil Won¹⁶, Anatoli Zelenski⁴, and Konstantin Zioutas³⁶

Sensitivity

• Axion-EDM coupling g_d

• Theoretically-motivated

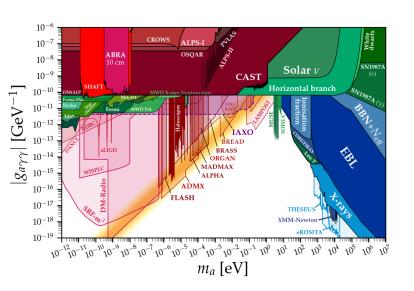
- o QCD axion P. Graham and S. Rajendran, PRD 88, 035023 (2013)
- $\circ~Z_{\mathcal{N}}$ axion L. Luzio *et al.*, JCAP 2021, 001, JHEP 2021, 184
- Excluded
 - o (Direct) nEDM C. Abel *et al.*, PRX 7, 041034 (2017)
 - o (Indirect) SN1987A P. Graham and S. Rajendran, PRD 88, 035023 (2013)
- Projected sensitivity (preliminary)
 - Parasitic to proposed pEDM experiment.
 - Periodogram: Oscillating EDM is effectively dc EDM.
 - Resonant rf WF: apply WF to make a resonance.
 - Dedicated magnetic ring (assuming $B \approx 1$ T).
 - \circ Tune ω_{g-2} or $\omega_{
 m WF}$.
- Other experiments
 - o CASPEr D. Budker *et al.*, PRX 4, 021030 (2014)
 - o nEDM beams I. Schulthess et al., arXiv:2204.01454

Summary

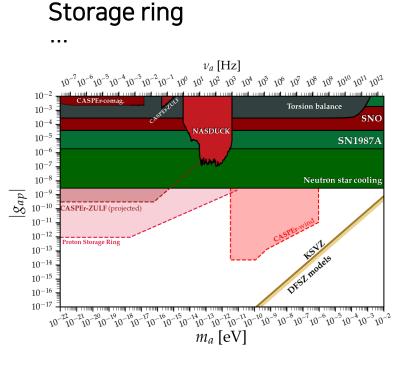
- Storage ring EDM method is applicable to search for axion-like dark matter.
 - Spin precession as observables. Projected EDM sensitivity ~ $O(10^{-29} e \cdot cm)$.
 - Sensitive to relatively low mass regions ($m_a \leq \mu eV$).
- New method utilizing an rf Wien filter has been studied.
 - Wider scannable range by tuning the WF frequency.
 - Minimal systematic effects.
 - Applicable to existing storage rings.
 - Parasitically applicable to pEDM experiment.

Thank you for your attention!

Axion coupling with SM particles


ARIADNE

CASPEr


• In general, there are three sorts of axion-SM couplings

 $g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$

Haloscope Helioscope Light Shinning through Wall

$g_{aff} \nabla a \cdot \hat{\mathbf{S}}$

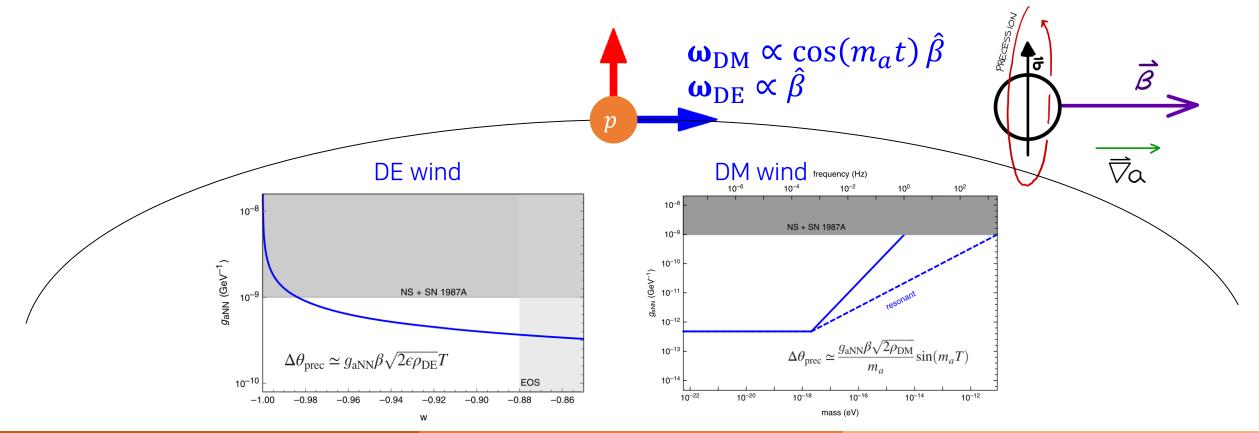
 $g_{\rm EDM} a {\bf \hat{S}} \cdot {\bf E}$

nEDM CASPEr **Storage ring**

Source: Ciaran O'Hare, https://cajohare.github.io/AxionLimits

Storage ring probes of DM/DE

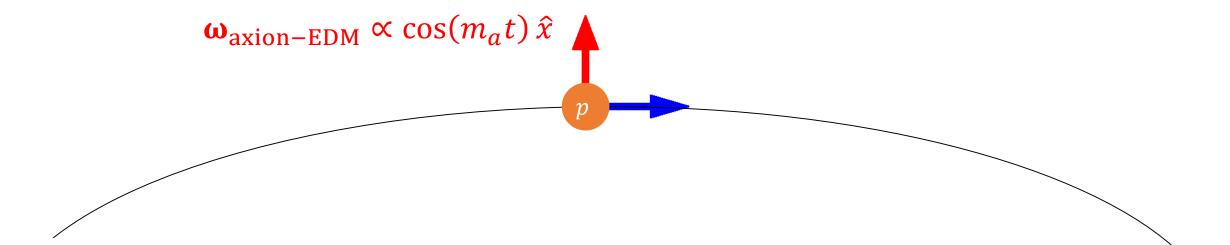
• Couplings with dark matter (DM) and dark energy (DE)


• ALP or vector DM wind $(g_{aNN} \nabla a \cdot \hat{\sigma}_N) \Rightarrow$ anomalous longitudinal oscillating B field.

• **DE** wind \Rightarrow anomalous longitudinal *B* field.

Storage ring is an optimal probe for wind coupling since β is large!

P. Graham et al., PRD 103, 055010 (2021)


P. Graham and S. Rajendran, PRD 88, 035023 (2013)

ICHEP'22

Storage ring probes of DM/DE

- Couplings with dark matter (DM) and dark energy (DE)
 - ALP or vector DM wind $(g_{aNN} \nabla a \cdot \hat{\sigma}_N) \Rightarrow$ anomalous longitudinal oscillating B field.
 - **DE** wind \Rightarrow anomalous longitudinal *B* field.
 - ALP DM-EDM $(g_{aN\gamma}a\hat{\sigma}_N \cdot \mathbf{E}) \Rightarrow$ oscillating EDM at m_a . For the QCD axion: $d_N^{\text{QCD}} \approx 10^{-34} e \cdot \text{cm}$.

- Storage ring probes of axion-induced oscillating EDM: S. Chang *et al.*, PRD **99**, 083002 (2019).
- Complementary method using an rf Wien filter: On Kim and Y. Semertzidis, PRD 104, 096006 (2021).
- Allows parasitic measurement with pEDM experiment: (LF) periodogram + (HF) rf resonance.

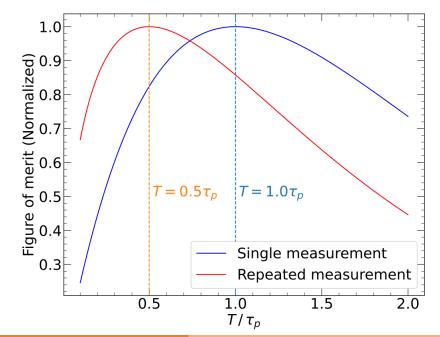
P. Graham and S. Rajendran, PRD 88, 035023 (2013)

P. Graham et al., PRD 103, 055010 (2021)

Statistical sensitivity

- Weighting the data taking
- Essentially we seek for non-zero asymmetry (ϵ) as a EDM signal: $\epsilon = \frac{L-R}{L+R} = PA\theta$
- Because $\theta(t)$ grows with time, it's better to have large statistics at later time than earlier.
- As an extreme limit, consider taking ALL statistics at time T.

$$\frac{\epsilon(T)}{T} = P_0 A \omega_d e^{-T/\tau_p}$$


- This enhances the sensitivity by ~50%.

Considering the repeated measurements, we have:

1

$$\sigma_{\omega_d} = \frac{1}{P_0 A e^{-T/\tau_p} \sqrt{N_{\rm cyc} T_{\rm exp} T}}$$

optimized when $T = 0.5 \tau_p$.

Statistical sensitivity

• Statistical sensitivity has been modified accordingly in presence of the WF.

$$\sigma_d = \frac{4.67s\hbar}{P_0 A E^* C_{\rm WF} \sqrt{\kappa N_{\rm cyc} T_{\rm exp} \tau_p}}$$

• Putting ideal experimental conditions: