

Two-loop QED corrections to the di-muon production in e+ e- collisions and related processes

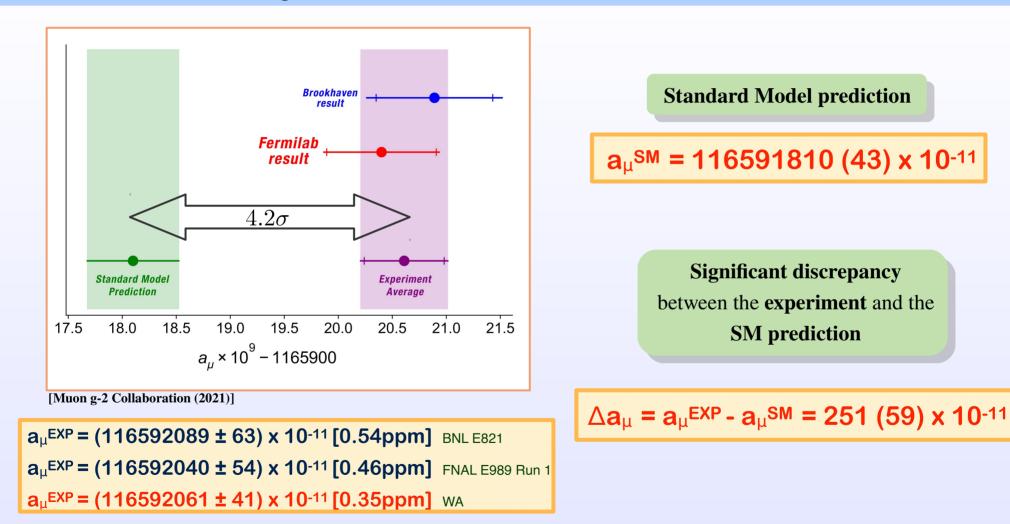
Jonathan Ronca

In collaboration with:

R. Bonciani, A. Broggio, S. Di Vita, A. Ferroglia, S. Laporta, P. Mastrolia, L. Mattiazzi, M. Passera, A. Primo, U. Schubert, W. J. Torres Bobadilla, and F. Tramontano

Istituto Nazionale di Fisica Nucleare Sezione di Napoli July 07, 2022

Motivation :: Muon (g - 2)



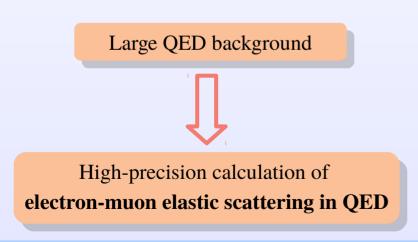
ICHEP 2022

Motivation :: Muon (g - 2)

 a_{μ}^{QED} = 116584718.931 (19)(100)(23) x 10⁻¹¹ a_{μ}^{EW} = 153.6 (1.0) x 10⁻¹¹ a_{μ}^{HLO} = 6931 (40) x 10⁻¹¹

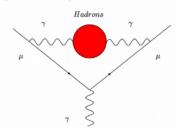
Affected by the **largest** theoretical error

To extract $\Delta \alpha_{had}(t)$ from MUonE's measurement, the ratio of the SM cross sections in the signal and normalisation regions must be known at \leq 10ppm!



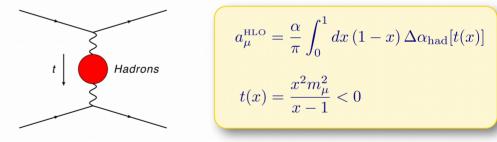
ICHEP 2022

• Leading hadronic contribution computed via the usual dispersive (timelike) formula:



$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^{(0)}(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:



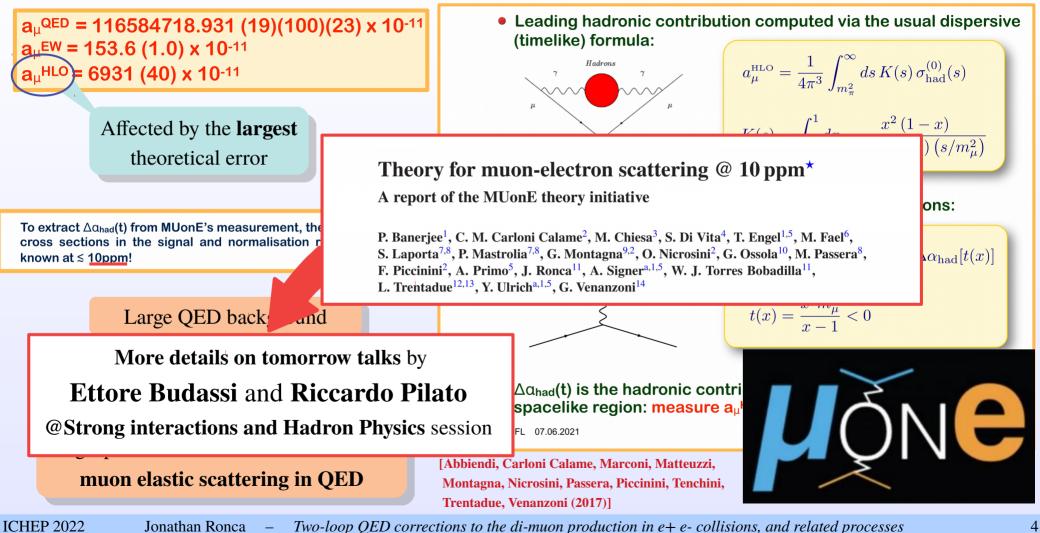
Lautrup, Peterman, de Rafael, 1972

$\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: measure a_{μ}^{HLO} via scattering data!

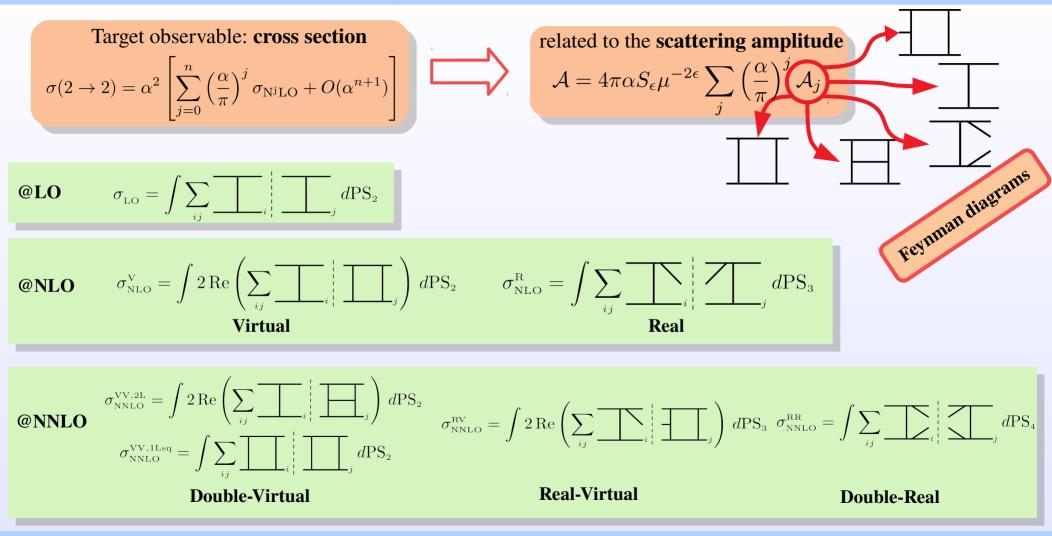
M Passera EPFL 07.06.2021

Carloni Calame, MP, Trentadue, Venanzoni, PLB 2015

Motivation :: Muon (g - 2)



Cross Section and Scattering Amplitudes in pQFT



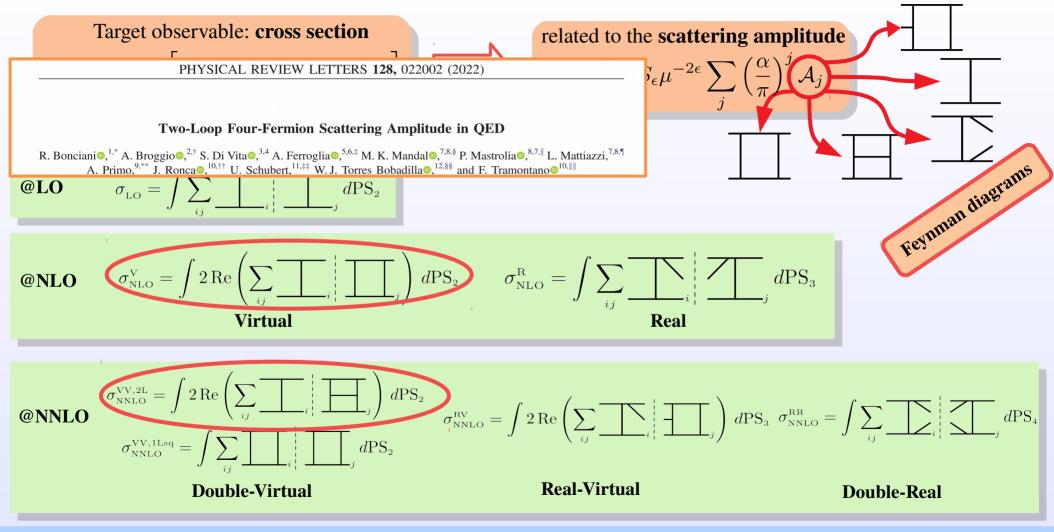
ICHEP 2022

Jonathan Ronca – Two-loop QED c

Two-loop QED corrections to the di-muon production in e + e- collisions, and related processes

Cross Section and Scattering Amplitudes in pQFT

ICHEP 2022



Anatomy of $\mu e \rightarrow \mu e$ two-loop NNLO QED contributions

$$\mathcal{M}_{b}^{(n)} = \frac{1}{4} \sum_{\text{spin}} 2\text{Re}[\mathcal{A}^{(0)*}\mathcal{A}^{(n)}]$$

$$= (S_{\epsilon})^{n} \int \prod_{i=1}^{n} \frac{d^{d}k_{i}}{(2\pi)^{d}} \sum_{G} \frac{N_{G}}{\prod_{\sigma \in G} D_{\sigma}} \in G$$

$$(S_{\epsilon})^{n} \int \prod_{i=1}^{n} \frac{d^{d}k_{i}}{(2\pi)^{d}} \sum_{G} \frac{N_{G}}{\prod_{\sigma \in G} D_{\sigma}}$$

$$(Observation: \frac{m_{e}}{m_{\mu}} \simeq 10^{-5} \quad One \text{ less mass-scale}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

$$(P_{e} = 0) \quad P_{e} = M \quad Opens \text{ the possibility of an analytical calculation}}$$

Using **Dimensional Regularization**: space-time is treated as a free parameter $d = 4 - 2\epsilon$

ICHEP 2022

Crossing: $e^- \mu^+ \rightarrow e^- \mu^+$ vs. $e^- e^+ \rightarrow \mu^- \mu^+$



$$e^{-}(p_1) \mu^{+}(p_2) \to e^{-}(p_3) \mu^{+}(p_4)$$

$$p_1^2 = p_3^2 = 0$$

$$p_2^2 = p_4^2 = M^2$$

$$s = (p_1 + p_2)^2$$

$$t = (p_1 - p_3)^2$$

$$u = (p_2 - p_3)^2$$

$$s + t + u = M^2$$

$$\mathcal{U}^{(0)} = \frac{4(s - M^2)^2 + 4st + (d - 2)t}{t^2}$$

Crossing

$$e^{-}(p_{1}) e^{+}(p_{2}) \rightarrow \mu^{-}(p_{3})\mu^{+}(p_{4})$$

$$p_{1}^{2} = p_{2}^{2} = 0$$

$$p_{3}^{2} = p_{4}^{2} = M^{2}$$

$$s = (p_{1} + p_{2})^{2}$$

$$t = (p_{1} - p_{3})^{2}$$

$$u = (p_{2} - p_{3})^{2}$$

$$s + t + u = M^{2}$$

$$\mathcal{M}^{(0)} = \frac{4(t - M^{2})^{2} + 4st + (d - 2)s^{2}}{s^{2}}$$

From now on, we consider the cross-related di-muon production

ICHEP 2022

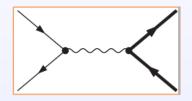
 \mathcal{N}

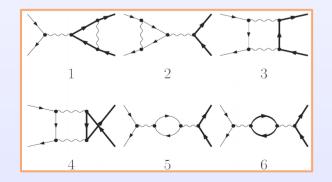
Jonathan Ronca – Two-loop QH

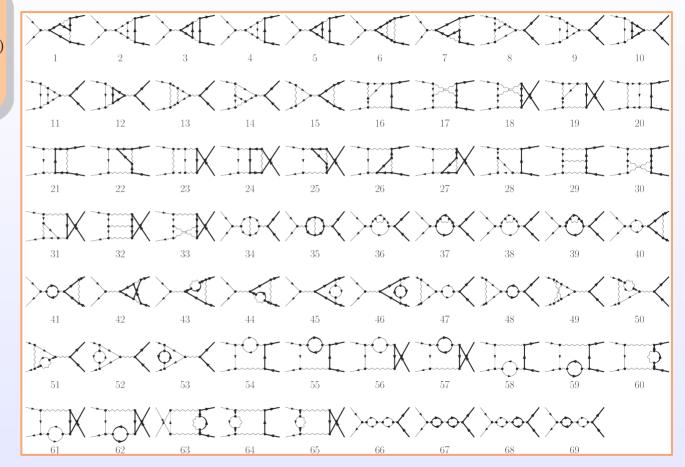
- Two-loop QED corrections to the di-muon production in e+ e- collisions, and related processes

Di-muon production in QED: Feynman Diagrams

$$\mathcal{M}_{b}^{(1)} = A^{(1)} + n_{l}B_{l}^{(1)} + n_{h}C_{h}^{(1)}$$
$$\mathcal{M}_{b}^{(2)} = A^{(2)} + n_{l}B_{l}^{(2)} + n_{h}C_{h}^{(2)} + n_{l}^{2}D_{l}^{(2)} + n_{l}n_{h}D_{lh}^{(2)} + n_{h}^{2}F_{h}^{(2)}$$

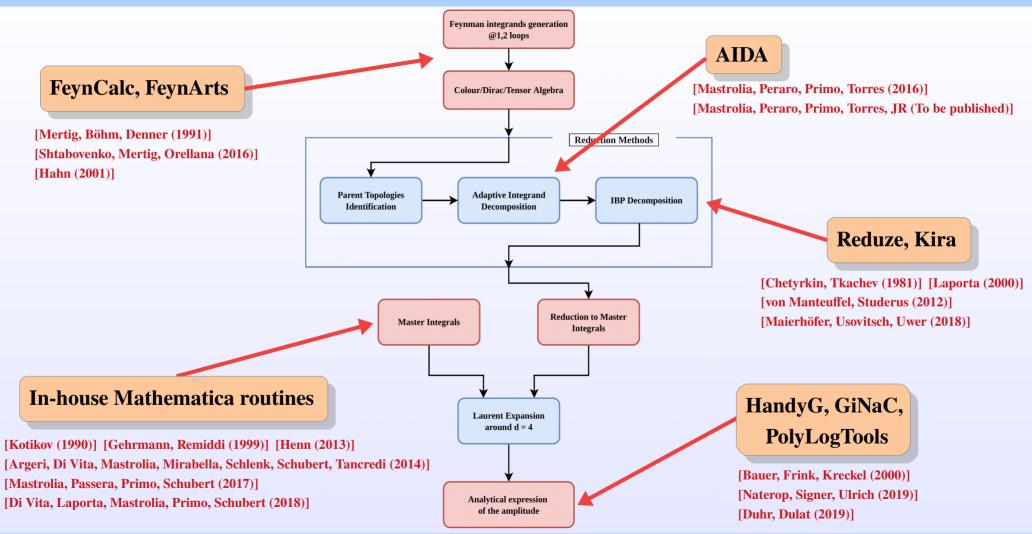






[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Schubert, Torres Bobadilla, Tramontano, JR (2021)]

The AIDA framework



ICHEP 2022

Jonathan Ronca –

- Two-loop QED corrections to the di-muon production in e+ e- collisions, and related processes

UV Renormalization

$$\mathcal{M}_b^{(2)}$$
 is UV divergent Renormalisation $\sim \mathcal{M}^{(2)}$

$$\mathcal{M} = Z_{2,e} Z_{2,\mu} \mathcal{M}_b(\alpha_b = \alpha_b(\alpha), M_b = M_b(M))$$

where

$$M_b(M) = Z_M M$$

$$\alpha_s S_\epsilon = \alpha(\mu^2) \mu^{2\epsilon} Z_\alpha$$

Renormalisation constants:

$$Z_j = 1 + \left(\frac{\alpha}{\pi}\right)\delta Z_j^{(1)} + \left(\frac{\alpha}{\pi}\right)^2\delta Z_j^{(2)} + O(\alpha^3)$$

Renormalisation schemes

- **On-shell** renormalisation $Z_{2,e}, Z_{2,\mu}, Z_M$
- $\overline{\mathrm{MS}}$ renormalisation Z_{α}

Renormalised interferences:

$$\mathcal{M}^{(0)} = \mathcal{M}^{(0)}_{b}$$

$$\mathcal{M}^{(1)} = \mathcal{M}^{(1)}_{b} + (\delta Z^{(1)}_{2,\mu} + Z^{(1)}_{\alpha})\mathcal{M}^{(0)}_{b}$$

$$\mathcal{M}^{(2)} = \mathcal{M}^{(2)}_{b} + (\delta Z^{(1)}_{2,\mu} + Z^{(1)}_{\alpha})\mathcal{M}^{(1)}_{b}$$

$$+ (\delta Z^{(2)}_{2,\mu} + \delta Z^{(2)}_{2,e} + Z^{(2)}_{\alpha} + \delta Z^{(1)}_{2,\mu} Z^{(1)}_{\alpha})\mathcal{M}^{(0)}_{b}$$

$$+ \delta Z^{(1)}_{M} \mathcal{M}^{(1)}_{\text{massCT}}$$

11

ICHEP 2022

Jonathan Ronca – Two-loop QH

- Two-loop QED corrections to the di-muon production in e+ e- collisions, and related processes

Checks

$$\mathcal{M}_{b}^{(1)} = A^{(1)} + n_{l}B_{l}^{(1)} + n_{h}C_{h}^{(1)}$$
$$\mathcal{M}_{b}^{(2)} = A^{(2)} + n_{l}B_{l}^{(2)} + n_{h}C_{h}^{(2)} + n_{l}^{2}D_{l}^{(2)}$$
$$+ n_{l}n_{h}D_{lh}^{(2)} + n_{h}^{2}F_{h}^{(2)}$$

Evaluating the interferences with
HandyG and GiNaC

$$\frac{s}{M^2} = 5$$
, $\frac{t}{M^2} = -\frac{5}{4}$, $\mu = M$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0	ϵ
$\mathcal{M}^{(0)}$	-	-	-	-	$\frac{181}{100}$	-2
$A^{(1)}$	_	_	$-\frac{181}{100}$	1.99877525	22.0079572	-11.7311017
$B_l^{(1)}$	-	-	-	-	-0.069056030	4.94328573
$C_h^{(1)}$	-	-	-	-	-2.24934027	2.54943566
$A^{(2)}$	$\frac{181}{400}$	-0.499387626	-35.4922919	19.4997261	49.0559119	-
$B_l^{(2)}$		$-\frac{181}{400}$	0.785712779	-16.1576674	-3.75247701	-
$C_h^{(2)}$	-	-	1.12467013	-9.50785825	-25.8771503	-
$D_{l}^{(2)}$	-	-	-	-	-3.96845688	-
$E_{hl}^{(2)} \\ F_{h}^{(2)}$	-		-	_	-4.88512563	-
$F_{h}^{(2)}$	-	_	-	_	-0.158490810	-

[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Schubert, Torres Bobadilla, Tramontano, JR (2021)]

How do we check these terms?

ICHEP 2022

Checks :: Literature

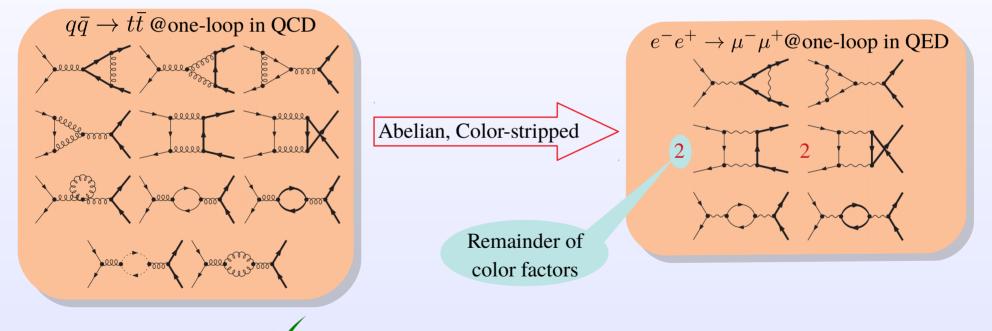
 $q \bar{q}
ightarrow t ar{t}$ in QCD

- > 1-loop and 2-loop corrections already known in literature
- Abelian part get contributions from *QED-like diagrams* only

[Czakon(2008)]

 $e^-e^+
ightarrow \mu^- \mu^+$ in QED

[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)] [Bärnreuther, Czakon, Fiedler (2014)]



Full agreement with the abelian part of top-pair production

ICHEP 2022

Jonathan Ronca

Two-loop QED corrections to the di-muon production in e+ e- collisions, and related processes

Checks :: IR structure

Two-loop IR poles from **one-loop and tree** (renormalised) **contributions**

$$\mathcal{M}^{(1)}\Big|_{\text{poles}} = \frac{1}{2} Z_1^{\text{IR}} \mathcal{M}^{(0)}\Big|_{\text{poles}}$$
$$\mathcal{M}^{(2)}\Big|_{\text{poles}} = \frac{1}{8} \left[\left(Z_2^{\text{IR}} - \left(Z_1^{\text{IR}} \right)^2 \right) \mathcal{M}^{(0)} + 2 Z_1^{\text{IR}} \mathcal{M}^{(1)} \right] \Big|_{\text{poles}}$$

[Becher, Neubert (2009)] [Hill (2017)]

IR Renormalisation Factor

$$\ln Z_{\rm IR} = \frac{\alpha}{4\pi} \left(\frac{\Gamma_0'}{4\epsilon^2} + \frac{\Gamma_0}{2\epsilon} \right) + \left(\frac{\alpha}{4\pi} \right)^2 \left(-\frac{3\beta_0\Gamma_0'}{16\epsilon^3} + \frac{\Gamma_1' - 4\beta_0\Gamma_0}{16\epsilon^2} + \frac{\Gamma_1}{4\epsilon} \right) + \mathcal{O}\left(\alpha^3\right)$$

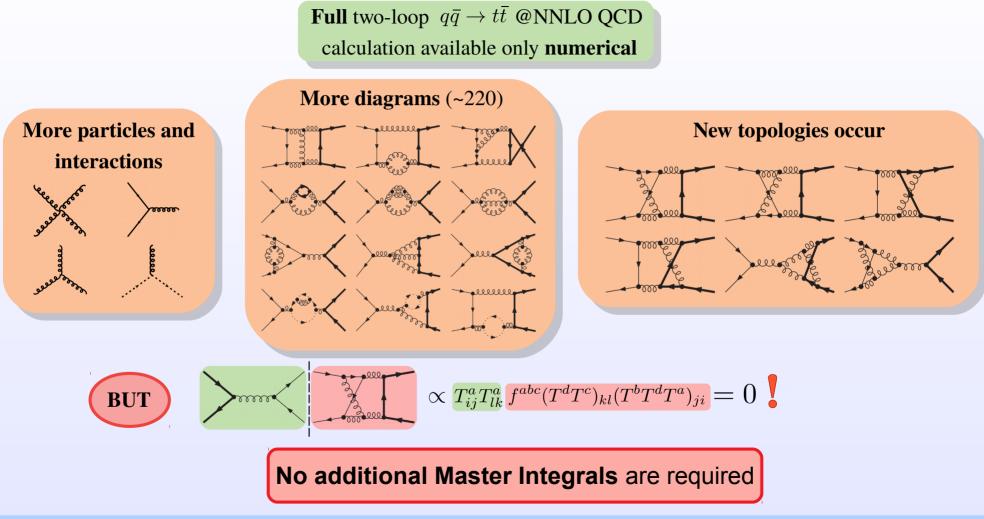
$$\gamma_i = \sum_{j=0}^n \left(\frac{\alpha}{\pi}\right)^{j+1} \gamma_i^{(j)} + O\left(\alpha^{n+1}\right)$$

Anomalous dimension
$$\Gamma = \gamma_{\text{cusp}}(\alpha) \ln\left(-\frac{s}{\mu^2}\right) + 2\gamma_{\text{cusp}}(\alpha) \ln\left(\frac{t-M^2}{u-M^2}\right) + \gamma_{\text{cusp,M}}(\alpha,s) + 2\gamma_h(\alpha) + 2\gamma_\psi(\alpha)$$

Full agreement with the direct calculation of the two-loop contribution

Beta function

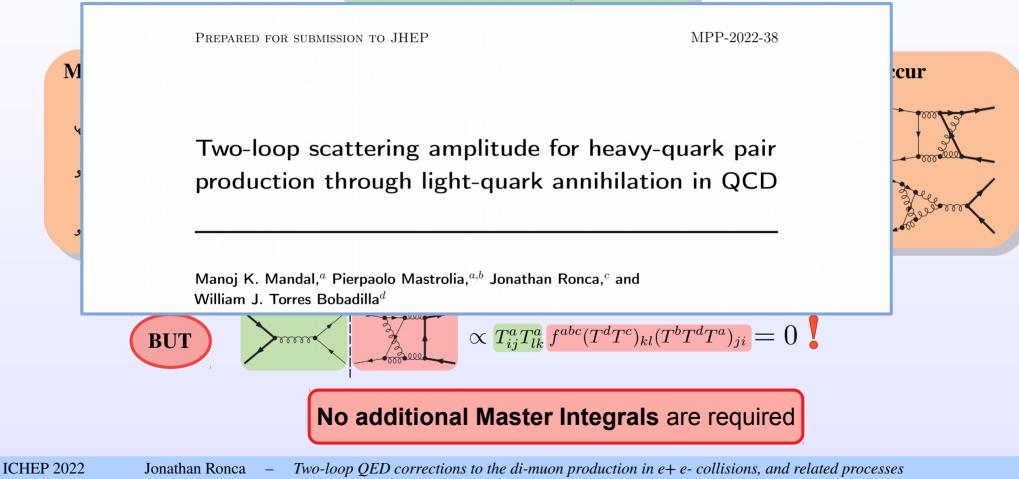
Extension to two-loop top-pair production @ NNLO QCD



Extension to Two-loop top-pair production @ NNLO QCD

Full two-loop $q\bar{q} \rightarrow t\bar{t}$ @NNLO QCD

calculation available only numerical



16

Extension to two-loop top-pair production @ NNLO QCD

$$\mathcal{M}^{(1)} = 2(N_c^2 - 1) \left(N_c A^{(1)} + B^{(1)} + n_l C_l^{(1)} + n_h C_h^{(1)} \right)$$
$$\mathcal{M}^{(2)} = 2(N_c^2 - 1) \left(N_c^2 A^{(2)} + B^{(2)} + \frac{C^{(2)}}{N_c^2} + n_l N_c D_l^{(2)} + n_h N_c D_h^{(2)} \right)$$
$$+ n_l \frac{E_l^{(2)}}{N_c} + n_h \frac{E_h^{(2)}}{N_c} + n_l^2 F_l^{(2)} + n_l n_h F_{lh}^{(2)} + n_h^2 F_h^{(2)} \right)$$

Evaluating the interferences with HandyG and GiNaC $\frac{s}{M^2} = 5$, $\frac{t}{M^2} = -\frac{5}{4}$, $\mu = M$

$A^{(0)}$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0 $\frac{181}{100}$	ϵ^1		First fully-analytical			
$\begin{array}{c} A^{(1)} \\ \end{array}$			$-\frac{181}{400}$	0.1026418456757775	$\frac{100}{1.356145770566065}$	2.230403451742140		calculation			
$B^{(1)}$	-	-	$\frac{181}{400}$	-0.3180868339485723	-5.763132746701004	2.913169881363488					
$C_l^{(1)}$	-	-	0	0	-0.01726400752682416	1.235821434465827					
$C_h^{(1)}$	-	-	0	0	-0.5623350683773134	0.6373589172648111					
$A^{(2)}$	$\frac{181}{800}$	$\underline{1.391733154}324222$	<u>-2.298174307</u> 221209	-4.145752448999165	$\underline{17.3713659}8564062$	-		Full agreement with			
$B^{(2)}$	$-\frac{181}{400}$	<u>-1.323646320</u> 375650	$\underline{8.507455541}210568$	$\underline{6.035611156}200398$	$\underline{-35.12861106}350758$	-					
$C^{(2)}$	$\frac{181}{800}$	<u>-0.0680868339</u> 4857230	$\underline{-18.00716652}035224$	$\underline{6.302454931}016090$	$\underline{3.52404491}2826756$	-		the literature			
$D_l^{(2)}$	0	$-\frac{181}{800}$	<u>0.260505733</u> 8631945	<u>-0.7250180282</u> 219092	$\underline{-1.93541724}6635768$	-					
$D_h^{(2)}$	0	0	$\underline{0.562335068}3773134$	$\underline{0.1045606449}242690$	<u>-1.70474799</u> 7587188	-					
$E_l^{(2)}$	0	$\frac{181}{800}$	<u>-0.3323207</u> 299541260	$\underline{7.904121951}420471$	$\underline{2.84869783}6597635$	-	[Czako	on(2008)]			
$E_h^{(2)}$	0	0	<u>-0.562335068</u> 3773134	$\underline{4.528240788}258799$	$\underline{12.73232424}278180$	-		[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)]			
$F_l^{(2)}$	0	0	0	0	$\underline{-1.984228442}234312$	-		ceuther, Czakon, Fiedler (2014)]			
$\begin{bmatrix} F_{lh}^{(2)} \\ F_{h}^{(2)} \\ \end{bmatrix}$	0	0	0	0	$\underline{-2.442562819}239786$	-		er, Hartanto, Zoia (2021)]			
$F_h^{(2)}$	0	0	0	0	<u>-0.07924540546</u> 146283	-					

[Mandal, Mastrolia, Torres Bobadilla, JR (2022)]

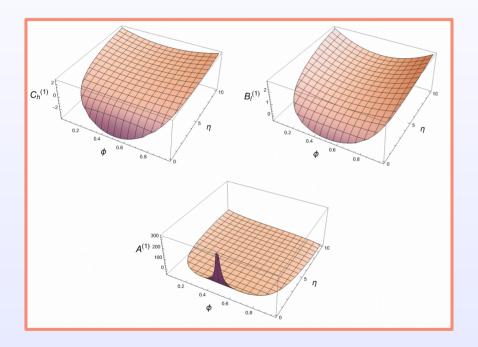
ICHEP 2022

Jonathan Ronca

- Two-loop QED corrections to the di-muon production in e+ e- collisions, and related processes

Results: One-loop di-muon production @ NLO QED

$$\mathcal{M}_0^{(1)} = A^{(1)} + n_l B_l^{(1)} + n_h C_h^{(1)} \big|_{\text{finite}}$$

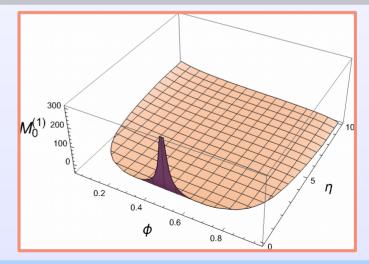


[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Schubert, Torres Bobadilla, Tramontano, JR (2021)]

$$\eta = \frac{s}{4M^2} - 1, \quad \phi = -\frac{(t - M^2)}{s}$$

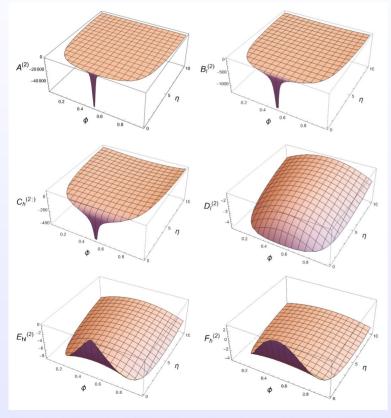
Production region

$$\eta > 0, \quad \frac{1}{2}\left(1 - \frac{\eta}{1+\eta}\right) < \phi < \frac{1}{2}\left(1 + \frac{\eta}{1+\eta}\right)$$



Results: Two-loop di-muon production @ NNLO QED

$$\left[\mathcal{M}_{0}^{(2)} = A^{(2)} + n_{l}B_{l}^{(2)} + n_{h}C_{h}^{(2)} + n_{l}^{2}D_{l}^{(2)} + n_{l}n_{h}E_{lh}^{(2)} + n_{h}^{2}F_{h}^{(2)}\right]_{\text{finite}}$$

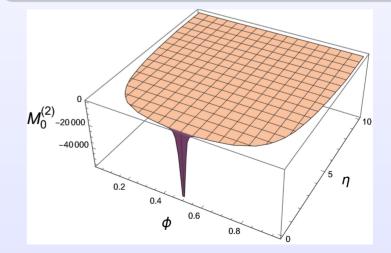


[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Schubert, Torres Bobadilla, Tramontano, JR (2021)]

$$\eta = \frac{s}{4M^2} - 1, \quad \phi = -\frac{(t - M^2)}{s}$$

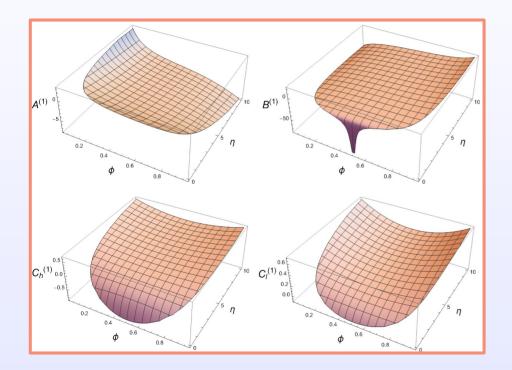
Production region

$$\eta > 0, \quad \frac{1}{2}\left(1 - \frac{\eta}{1+\eta}\right) < \phi < \frac{1}{2}\left(1 + \frac{\eta}{1+\eta}\right)$$



Results: One-loop top-pair production @ NLO QCD

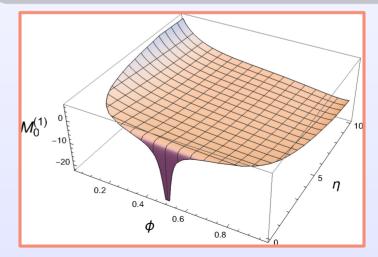
$$\left(\mathcal{M}_{0}^{(1)} = 2(N_{c}^{2} - 1)\left(N_{c}A^{(1)} + \frac{B^{(1)}}{N_{c}} + n_{l}C_{l}^{(1)} + n_{h}C_{h}^{(1)}\right)\right|_{\text{finite}}$$



$$\eta = \frac{s}{4M^2} - 1, \quad \phi = -\frac{(t - M^2)}{s}$$

Production region

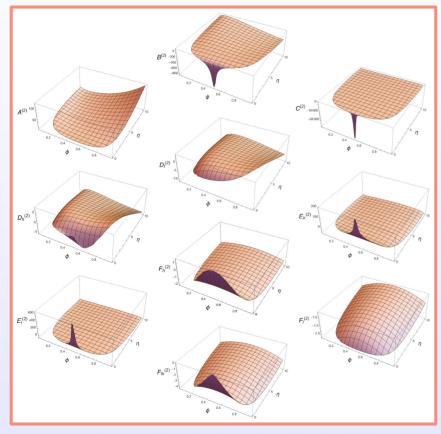
$$\eta > 0, \quad \frac{1}{2} \left(1 - \frac{\eta}{1+\eta} \right) < \phi < \frac{1}{2} \left(1 + \frac{\eta}{1+\eta} \right)$$



[Mandal, Mastrolia, Torres Bobadilla, JR (2022)]

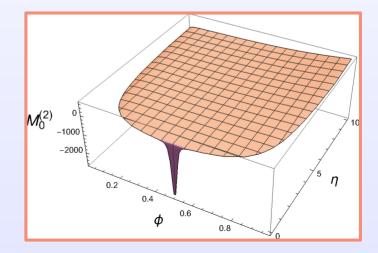
Results: Two-loop top-pair production @ NNLO QCD

$$\mathcal{M}_{0}^{(2)} = 2(N_{c}^{2} - 1) \left(N_{c}^{2} A^{(2)} + B^{(2)} + \frac{C^{(2)}}{N_{c}^{2}} + n_{l} N_{c} D_{l}^{(2)} + n_{h} N_{c} D_{h}^{(2)} + n_{l} \frac{E_{l}^{(2)}}{N_{c}} + n_{h} \frac{E_{h}^{(2)}}{N_{c}} + n_{l}^{2} F_{l}^{(2)} + n_{l} n_{h} F_{lh}^{(2)} + n_{h}^{2} F_{h}^{(2)} \right) \Big|_{\text{finite}}$$



$$\eta = \frac{s}{4M^2} - 1, \quad \phi = -\frac{(t - M^2)}{s}$$

Production region $\eta > 0, \quad \frac{1}{2} \left(1 - \frac{\eta}{1+\eta} \right) < \phi < \frac{1}{2} \left(1 + \frac{\eta}{1+\eta} \right)$



[Mandal, Mastrolia, Torres Bobadilla, JR (2022)]

Conclusions & Outlook

Electron-muon elastic scattering @NNLO QED is a crucial input for the MuonE experiment

Crossing: the two-loop contributions to di-muon production @NNLO QED via electron-positron annihilation

- First QED analytical two-loop calculation for di-muon production process
- Complete **automation** through the **AIDA framework**
- **Cross-checked** against
 - Independent calculations
 - > IR structure cross-checked against the SCET prediction
- Grid of 10500 phase-space points has been generated

Extension to two-loop contributions to top-pair production via quark-antiquark annihilation @NNLO QCD
 Recent development: analytical one-loop squared contributions to di-muon production @NNLO QED

- Inclusion of **non-zero** electron mass to electron-muon elastic scattering calculation: **massification**
- **Threshold expansion** for both di-muon and top-pair production @NNLO
- Inclusion of our contribution on MC generators

[Mitov, Moch (2006)] [Becher, Melnikov (2007)] [Engel, Gnendiger, Signer, Ulrich (2019)] [Heller (2021)]

ICHEP 2022

Jonathan Ronca – Tw

Thank you

Reduction of Feynman Integrals

$$\mathcal{M}_b^{(2)} = (S_\epsilon)^2 \int \prod_{i=1}^2 \frac{d^d k_i}{(2\pi)^d} \sum_G \frac{N_G}{\prod_{\sigma \in G} D_\sigma}$$

 $\mathcal{M}_{\iota}^{(2)} = \mathbb{C}^{(2)} \cdot \mathbf{I}^{(2)} \blacktriangleleft$

Adaptive Integrand Decomposition

Idea: $\begin{aligned} & d = d_{||} + d_{\perp} \\ & k_i = k_{||i} + k_{\perp i} \end{aligned}$

 $D_{\sigma} \text{ will not depend on transverse directions}$ Direct integration $\frac{N_G}{\prod_{\sigma \in G} D_{\sigma}} = \sum_{\tau \in P(G)} \frac{\Delta_{\tau}}{\prod_{j \in \tau} D_j}$

Integration-by-parts Identities

$$\int \prod_{i=1}^{2} \frac{d^{d}k_{i}}{(2\pi)^{d}} \frac{\partial}{\partial k_{l}^{\mu}} \left(q^{\mu} \frac{\mathcal{N}}{\prod_{\sigma \in G} D_{\sigma}} \right) = 0$$

- > IBPs generate a linear system of Eqs.
- Relation between integrals
- \succ Coefficient depending on scales and d

of independent Eqs. = # of **Master Integrals**

[Mastrolia, Peraro, Primo, Torres (2016)] [Mastrolia, Peraro, Primo, Torres, JR (To be published)]

[Chetyrkin, Tkachev (1981)] [Laporta (2000)]

Master Integrals

Master Integrals for $\mu e \rightarrow \mu e$ are known in literature.

$$\mathbf{I}_{\mu e \to \mu e}^{(2)} = \mathbf{I}_{e e \to \mu \mu}^{(2)}|_{s \leftrightarrow t}$$

Representation through Generalized PolyLogarithms

$$I_j^{(2)}(s,t,M;d) = \sum_i C_i(\{w\}_{ji},d)G(\{w\}_{ji},1)$$

where

$$G(w_n,\ldots,w_1;\tau) = \int_0^\tau \frac{dt}{t-w_n} G(w_{n-1},\ldots,w_1;t)$$

Letters $w_j = w_j(s, t, M)$

- > O(4000) GPLs
- > GPLs up to weight 4
- > 18 letters

ICHEP 2022

[Kotikov (1990)] [Gehrmann, Remiddi (1999)] [Henn (2013)] [Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi (2014)] [Mastrolia, Passera, Primo, Schubert (2017)]

[Di Vita, Laporta, Mastrolia, Primo, Schubert (2018)]

