

ttH production in the Higgs characterisation model at NLO in QCD with full off-shell effects

Based on JHEP 02 (2022), arXiv:2205.09983

Jonathan Hermann, RWTH Aachen University In collaboration with Daniel Stremmer, RWTH Aachen University and Małgorzata Worek, RWTH Aachen University

International Conference on High Energy Physics • 08.07.2022 • Bologna

SPONSORED BY THE

Federal Ministry of Education and Research

LHC Higgs XS WG '16 2

 $\mathcal{BR}(H \rightarrow bb) \sim 58\%$

Introduction

ttH production:

- Observed for the first time in 2018, ATLAS <u>'18, CMS'18</u>
- Allows for direct probe of Yukawa interaction and it's CP nature at tree level
- Top is heaviest SM particle \rightarrow strongest Yukawa coupling
- Measurement of CP-odd component would indicate new physics

Higgs production:

Higgs decay:

SM-like interpretation:

- Still freedom in the CP-state of the Higgs boson
- SM prediction: Higgs is CP-even
- CP-odd state excluded with 3.9 σ
- $\alpha_{CP} > 43^{\circ}$ excluded at 95% CL if CP-even and CP-odd couplings are equal

<u>ATLAS '20</u>

BSM interpretations:

- Extended Higgs sector
- 2HDM

...

Introduction

Main Goal: $pp \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, H + X \text{ at } \mathcal{O}(\alpha_s^3 \alpha^5)$

• Provide state-of-the-art predictions for **ttH** production at **NLO** in **QCD** including **full off-shell effects** for top quarks and gauge bosons with **Higgs decays** in the NWA

• Provide state-of-the-art predictions for **ttH** production at **NLO** in **QCD** including full off-shell effects

for top quarks and gauge bosons and allowing for **CP-mixing** in the Higgs-Yukawa interaction

<u>arXiv:2205.09983</u>

- Focus on second paper since CP-even case corresponds to SM
- Discuss SM Higgs decays separately at the end

HELAC-NLO

- Store events in Les Houches Event files Alwall et al. '06 or Root Ntuples Antcheva et al. '09, Bern et al. '14
- Use **HEPlot** <u>Bevilacqua (unpublished)</u> for histograms
 - **Flexible cuts** 0
 - Reweighting to different scales / PDF sets Ο

HELAC-NLO

Pittau, Worek '13

Bevilacqua, Czakon, Kubocz, Worek '13

Theory status

SM Higgs boson (stable tops):

• ttH @ NLO in QCD+EW with NNLL soft gluon resummation Broggio et al. '16, '17, '19, Kulesza, et al. '16, '18, '20

SM Higgs boson (with top quark decays):

- ttH @ NLO in QCD with full off-shell effects Denner, Feger '15
- ttH @ NLO in QCD+EW with full off-shell effects <u>Denner, Lang, Pellen, Uccirati '17</u>
- ttH @ NLO in QCD with full off-shell effects + Higgs decays in NWA <u>Stremmer, Worek '22</u>

Higgs boson with CP-odd admixture:

- ttX @ NLO in QCD with LO top decays matched to Parton Shower Demartin et al. '14
 - HC_NLO_X0 model Artoisenet et al. '13, Maltoni et al. '14, Demartin et al. '14, Demartin et al. '15
- ttX @ NLO in QCD with full off-shell effects JH, Stremmer, Worek '22

The Higgs characterisation framework (HCF)

Coupling choices:

 $\kappa_{Ht\bar{t}} = 1$ $\kappa_{At\bar{t}} = 2/3$

 $\kappa_{HVV} = 1$

<u>Artoisenet et al. '13</u> <u>Maltoni et al. '14</u> <u>Demartin et al. '14</u> <u>Demartin et al. '15</u>

Full off-shell effects

NWA = DR with on-shell masses
$$\frac{\Gamma}{m} \rightarrow 0$$

Integrated fiducial cross-sections (NLO)

α_{CP}		Off-shell	NWA	Off-shell effects
0 (SM)	$\sigma_{\rm LO}$ [fb] $\sigma_{\rm NLO}$ [fb] $\sigma_{\rm NLO_{LOdec}}$ [fb]	$2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}$ $2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}$ $-$	$2.0388(2)^{+0.6290}_{-0.4483}(22\%)$ $2.475(1)^{+0.027}_{-0.113}(4.6\%)$ $2.592(1)^{+0.161}_{-0.242}(9.3\%)$	-0.37% -0.36%
π/4	$ \sigma_{\rm LO} \text{ [fb]} $ $ \sigma_{\rm NLO} \text{ [fb]} $ $ \sigma_{\rm NLO_{\rm LOdec}} \text{ [fb]} $	1.21 $1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}$ $1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}$ -	$1.21 (100 \text{dec.} 1.27)$ $1.1851(1) {}^{+0.3707 (31\%)}_{-0.2633 (22\%)}$ $1.452(1) {}^{+0.015 (1.0\%)}_{-0.069 (4.8\%)}$ $1.517(1) {}^{+0.097 (6.4\%)}_{-0.144 (9.5\%)}$	0.66% 0.89%
π/2	$\mathcal{K} = \sigma_{\rm NLO} / \sigma_{\rm LO}$ $\sigma_{\rm LO}$ [fb] $\sigma_{\rm NLO}$ [fb] $\sigma_{\rm NLO_{\rm LOdec}}$ [fb]	1.23 $0.38277(6)^{+0.13123}_{-0.09121}(24\%)$ $0.5018(3)^{+0.0083}_{-0.0337}(6.7\%)$ -	1.23 (LOdec: 1.28) $0.33148(3)^{+0.11240}_{-0.07835}(24\%)$ $0.4301(2)^{+0.0035}_{-0.0264}(6.1\%)$ $0.4433(2)^{+0.0323}_{-0.0470}(11\%)$	13.4% 14.3%
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

NLO corrections:

- 21% 31% corrections
- Increase with the mixing angle
- Reduced scale uncertainties
- NLO with LO decays overestimates NLO results by a few percent

Off-shell effects:

- Small for CP-even and CP-mixed Higgs boson
- Large effects for CP-odd Higgs boson

Integrated fiducial cross-sections (LO)

Differential distributions - NLO corrections

General behaviour:

- Larger corrections in distribution tails
- Corrections largest for CP-odd case
- Shape of K-factor similar between different CP-states
- Harder Higgs radiation in CP-odd case

Differential distributions - NLO corrections

Observables with top-quark decay products:

- Corrections largest for CP-odd case only for large opening angles
- For small opening angles, CP-odd case receives smallest corrections -> smaller shape distortions
- Harder Higgs radiation in CP-odd case suppresses K-factor
- CP-even and CP-mixed very similar

Differential distributions - Off-shell effects

Shape comparison:

- CP-even and CP-mixed similar, small difference in tails
- Tails much more pronounced in CP-odd case

Off-shell effects:

- Large effects on size and shape for CP-odd Higgs boson
- Only small effects for CP-even and CP-mixed
- Larger effects around kinematic edges ($M_{T2,t}, M_{e^+b}$)

SM Higgs boson decays

- Include SM Higgs boson decays in NWA (only Higgs on-shell)
- Decay events generated from LHEF in Higgs boson rest frame
- NLO QCD corrections to Higgs decays included

$$d\sigma = d\sigma_{t\bar{t}H} \frac{d\Gamma_{H\to X}}{\Gamma_{H}}$$
$$= d\sigma_{t\bar{t}H}^{0} \frac{d\Gamma_{H\to X}^{0}}{\Gamma_{H}} + d\sigma_{t\bar{t}H}^{1} \frac{d\Gamma_{H\to X}^{0}}{\Gamma_{H}} + d\sigma_{t\bar{t}H}^{0} \frac{d\Gamma_{H\to X}^{1}}{\Gamma_{H}}$$

• Four decay channels

(i) $H \to b\bar{b}$ (ii) $H \to \tau^+ \tau^-$ (iv) $H \to Z^* Z^* \to e^+ e^- e^+ e^-$

SM Higgs boson decays

	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	\mathcal{K}
	[fb]	[fb]	
Stable Higgs	$2.2130(2)^{+30.1\%}_{-21.6\%}$	$2.728(2)^{+1.1\%}_{-4.7\%}$	1.23
$H o b \overline{b}$	$0.8304(2)^{+44.4\%}_{-28.7\%}$	$0.9456(8)^{+2.5\%}_{-9.5\%}$	1.14
$H \to \tau^+ \tau^-$	$0.11426(2)^{+30.0\%}_{-21.6\%}$	$0.1418(1)^{+1.2\%}_{-4.8\%}$	1.24
$H \to \gamma \gamma$	$0.0037754(8)^{+30.0\%}_{-21.6\%}$	$0.004552(4)^{+0.9\%}_{-4.1\%}$	1.21
$H \to e^+ e^- e^+ e^-$	$1.0083(7) \cdot 10^{-5+30.2\%}_{-21.6\%}$	$1.313(4) \cdot 10^{-5+1.8\%}_{-6.2\%}$	1.30

- Integrated cross-sections ordered according to branching ratio
- Most distribution shapes similar to stable Higgs case
- Cuts on leptons reduce cross-section and affect distribution shapes for $H \rightarrow e^+e^-e^+e^-$

Conclusions

- Provided predictions for **ttH** production at **NLO** in **QCD** with full off-shell effects ...
 - ... including SM Higgs decays in NWA
 - ... with **CP-mixing** in Yukawa coupling
- NLO corrections
 - Around 14 % 30 % with Higgs decays included, 20 % 30 % without
 - Overall larger effects for CP-odd Higgs but smaller impact on distribution shapes
- Off-shell effects important
 - Large effects in distribution tails and around kinematic edges
 - Break symmetry in mixing angle
 - Large effects at integrated level for CP-odd Higgs
- Many observables affected by CP-mixing, e.g. σ , $M_{T2,t}$, M_{e^+b} , $\cos \theta_{ll}^*$, ...

Thank you for your attention!

Backup

Outlook

How can these predictions be used?

- Comparison to data (with parton level unfolding) in fiducial phase-space regions
 - Has been done for tt <u>Czakon et al. '20</u>, <u>CMS '22</u>

and tty <u>Bevilacqua et al. '18 '19 '20</u>, <u>ATLAS '20</u>

- Combine with tt+X predictions matched to Parton showers to approximately take into account off-shell effects
 - Has been done for ttW <u>Bevilacqua et al. '22</u>
- Resonance-aware matching to Parton showers
 - Has been done for tt <u>Jezo et al. '16</u>

Conclusions

- Which observables are sensitive to the CP-state?
 - Integrated fiducial cross-section (total rate)
 - Observables with kinematic edges ($M_{T2,t}, M_{e^+b}$)
 - Observables involving decay products of both top quarks ($\cos \theta_{ll}^*, ...$)
- How are the different CP-states affected by NLO QCD corrections?
 - Larger overall corrections for CP-odd Higgs boson but smaller shape distortions
 - CP-mixed very similar to CP-even (SM) case
- How are the different CP-states affected by off-shell effects?
 - Large corrections in CP-odd case even for integrated cross-section
 - Off-shell effects break symmetry of integrated cross-section
 - Particularly large effects in distribution tails and above kinematic edges

Institute for Theoretical Particle Physics and Cosmology The Higgs characterisation framework (HCF)

The Higgs characterisation framework (HCF)

Three reference points:

• **CP-even:**
$$\alpha_{\rm CP} = 0 \longrightarrow \cos(\alpha_{\rm CP}) = 1, \ \sin(\alpha_{\rm CP}) = 0$$

• CP-odd:
$$\alpha_{CP} = \frac{\pi}{2} \longrightarrow \cos(\alpha_{CP}) = 0, \ \sin(\alpha_{CP}) = 1$$

• CP-mixed: $\alpha_{CP} = \frac{\pi}{4} \longrightarrow \cos(\alpha_{CP}) = \sin(\alpha_{CP}) = \frac{1}{\sqrt{2}}$

Institute for Theoretical and Cosmology

Parameter choices

$\kappa_{Ht\bar{t}}$

• Choose $\kappa_{Ht\bar{t}} = 1$ to recover SM results for $\alpha_{CP} = 0$

$\underline{\kappa_{At\bar{t}}}$

- Choose $\kappa_{At\bar{t}} = 1$ to have the same coupling as for CP-even part
- Choose $\kappa_{At\bar{t}} = 2/3$ to be consistent with gluon-gluon fusion (ggF) measurements (ATLAS '21)

$\underline{\kappa_{HVV}}$

$$\mathcal{L}_{HVV} = \kappa_{HVV} \left(\frac{g_{HZZ}}{2} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right) H$$

Parameter choices

$\underline{\kappa_{Ht\bar{t}}}$

• Choose $\kappa_{Ht\bar{t}} = 1$ o recover SM results for $\alpha_{CP} = 0$

$\underline{\kappa_{At\bar{t}}}$

- Choose $\kappa_{At\bar{t}} = 1$ to have the same coupling as for CP-even part
- Choose $\kappa_{At\bar{t}} = 2/3$ to be consistent with gluon-gluon fusion (ggF) measurements (ATLAS '21)

κ_{HVV}

- Choose $\kappa_{HVV} = 1$ to be consistent with vector-boson fusion (VBF) measurements (CMS '19)
- Choose $\kappa_{HVV} = \cos(\alpha_{CP})$ to avoid coupling of pseudoscalar particle to vector bosons (e.g. 2HDM)

Differential distributions - NLO corrections

Observables with top-quark decay products:

- Corrections largest for CP-odd case only for small transverse momenta
- For large momenta, CP-odd case receives smallest corrections -> smaller shape distortions
- Harder Higgs radiation in CP-odd case suppresses K-factor
- CP-even and CP-mixed very similar

Differential distributions - NLO corrections

NLO corrections to top-quark decays:

- Almost no difference between the CP-states
- Significant shape distortions

Differential distributions - Off-shell effects

Shape comparison:

- CP-even and CP-mixed similar, large difference in tails
- In the tails, the CP-odd cross-section is actually the largest

Off-shell effects:

• Large effects for all CP-states above kinematic edge, largest for CP-odd

Differential distributions

• Shape comparison:

- CP-even and CP-mixed similar, small differences around 1 and -1
- Significant differences for CP-odd case

Off-shell effects:

- Significant effects on size and shape for CP-odd Higgs boson
- Only small effects for CP-even and CP-mixed

PDF: NNPDF31-lo-as-0118 NNPDF31-nlo-as-0118

Parameters:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) \,,$$

$$G_{\mu} = 1.166378 \cdot 10^{-5} \text{ GeV}^{-2}$$

$$\begin{split} m_t &= 173 \text{ GeV}, & m_H = 126 \text{ GeV}, \\ m_W^{\text{OS}} &= 80.385 \text{ GeV}, & \Gamma_W^{\text{OS}} = 2.0850 \text{ GeV}, \\ m_Z^{\text{OS}} &= 91.1876 \text{ GeV}, & \Gamma_Z^{\text{OS}} = 2.4952 \text{ GeV}, \\ m_V &= \frac{M_V^{\text{OS}}}{\sqrt{1 + (\Gamma_V^{\text{OS}}/m_V^{\text{OS}})^2}}, & \Gamma_V = \frac{\Gamma_V^{\text{OS}}}{\sqrt{1 + (\Gamma_V^{\text{OS}}/m_V^{\text{OS}})^2}} \\ \Gamma_t^{\text{LO}} &= 1.472886 \text{ GeV}, & \Gamma_t^{\text{NLO}} = 1.346449 \text{ GeV} \\ \Gamma_t^{\text{LO}} &= 1.495948 \text{ GeV}, & \Gamma_t^{\text{NLO}} = 1.367547 \text{ GeV} \end{split}$$

Cuts: $p_{T,b} > 25 \text{ GeV}, \quad |y_b| < 2.5, \quad p_{T,miss} > 20 \text{ GeV}$ $p_{T,\ell} > 20 \text{ GeV}, \quad |y_\ell| < 2.5,$

Jet-clustering: $anti-k_T$ jet algorithm R = 0.4.

Scale choice: $\mu_0=\mu_R=\mu_F=H_T/2$

$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$

Scale variation

ation:
$$\left(\frac{\mu_R}{\mu_0}, \frac{\mu_F}{\mu_0}\right) = \left\{ (2,1), (0.5,1), (1,2), (1,1), (1,0.5), (2,2), (0.5,0.5) \right\}$$

Masses for decays: $m_{\tau} = 1.77682 \text{ GeV},$ $m_b^{OS} = 4.92 \text{ GeV},$ $\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
(Bottom mass set to zero, but non-zero Yukawa coupling)Higgs width: $\Gamma_H = 4.226 \cdot 10^{-3} \text{ GeV}.$ Mass variation for Yukawa renormalization:
 $\overline{m}_b(m_H/2) = 3.160804 \text{ GeV},$ $\overline{m}_b(m_H) = 2.999774 \text{ GeV},$ $\overline{m}_b(2m_H) = 2.860548 \text{ GeV}$ (LO)

 $\overline{m}_b(m_H/2) = 3.100804 \text{ GeV}, \quad \overline{m}_b(m_H) = 2.899774 \text{ GeV}, \quad \overline{m}_b(2m_H) = 2.800548 \text{ GeV}$ (LC) $\overline{m}_b(m_H/2) = 2.977119 \text{ GeV}, \quad \overline{m}_b(m_H) = 2.805836 \text{ GeV}, \quad \overline{m}_b(2m_H) = 2.660844 \text{ GeV}$ (NLO)

Photon cuts:

$$\begin{aligned} R_{\gamma\gamma} &> 0.3 \,, \qquad R_{\gamma\ell} > 0.3 \,, \qquad R_{\gamma b} > 0.3 \,, \\ p_{T,\gamma} &> 25 \text{ GeV} \,, \qquad |y_{\gamma}| < 2.5 \,, \\ \sum_{i} E_{T,i} \Theta(R - R_{\gamma i}) &\leq \epsilon_{\gamma} E_{T,\gamma} \left(\frac{1 - \cos(R)}{1 - \cos(R_{\gamma,j})}\right)^{n} \qquad \forall R \leq R_{\gamma,j} \\ \epsilon_{\gamma} &= 1, n = 1 \text{ and } R_{\gamma,j} = 0.3 \end{aligned}$$

Parameters:

 Cuts:
 $p_{T,\,\ell} > 25 \,\, {
m GeV}$,
 $p_{T,\,b} > 25 \,\, {
m GeV}$,

 $|y_\ell| < 2.5$,
 $|y_b| < 2.5$,

Jet-clustering: $anti-k_T$ jet algorithm R = 0.4

Scale choice: $\mu_0=\mu_R=\mu_F=H_T/2$

$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$

Scale variation

iation:
$$\left(\frac{\mu_R}{\mu_0}, \frac{\mu_F}{\mu_0}\right) = \left\{ (2,1), (0.5,1), (1,2), (1,1), (1,0.5), (2,2), (0.5,0.5) \right\}$$

Integrated fiducial cross-sections (NLO)

 σ_{NLO}

$$_{,expanded} = \left(\frac{\Gamma_{NLO}}{\Gamma_{LO}}\right)^2 \cdot \sigma_{NLO} - 2\frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \cdot \sigma_{LO}$$

α_{CP}		Off-shell	NWA	Off-shell effects
0 (SM)	$ \begin{aligned} \sigma_{\rm LO} ~ [\rm fb] \\ \sigma_{\rm NLO} ~ [\rm fb] \\ \sigma_{\rm NLO_{\rm LOdec}} ~ [\rm fb] \\ \\ \mathcal{K} = \sigma_{\rm NLO}/\sigma_{\rm LO} \end{aligned} $	$\begin{array}{c} 2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}\\ 2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}\\ -\\ 1.21\end{array}$	$2.0388(2)^{+0.6290}_{-0.4483}(22\%)$ $2.475(1)^{+0.027}_{-0.113}(4.6\%)$ $2.592(1)^{+0.161}_{-0.242}(9.3\%)$ 1.21 (LOdec: 1.27)	-0.37% -0.36%
π/4	$\sigma_{ m LO}$ [fb] $\sigma_{ m NLO}$ [fb] $\sigma_{ m NLO_{ m LOdec}}$ [fb]	$\begin{array}{c} 1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}\\ 1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}\\ -\end{array}$	$\begin{array}{c} 1.1851(1)^{+0.3707(31\%)}_{-0.2633(22\%)}\\ 1.452(1)^{+0.015(1.0\%)}_{-0.069(4.8\%)}\\ 1.517(1)^{+0.097(6.4\%)}_{-0.144(9.5\%)}\end{array}$	0.66% 0.89%
π/2	$\begin{split} \mathcal{K} &= \sigma_{\rm NLO}/\sigma_{\rm LO} \\ \\ \sigma_{\rm LO} ~ [\rm fb] \\ \\ \sigma_{\rm NLO} ~ [\rm fb] \\ \\ \\ \sigma_{\rm NLO_{\rm LOdec}} ~ [\rm fb] \end{split}$	$\begin{array}{c} 1.23\\ 0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)}\\ 0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)}\\ -\end{array}$	$\begin{array}{c} 1.23 \text{ (LOdec: } 1.28) \\ \\ 0.33148(3) {}^{+0.11240(34\%)}_{-0.07835(24\%)} \\ 0.4301(2) {}^{+0.0035(0.8\%)}_{-0.0264(6.1\%)} \\ 0.4433(2) {}^{+0.0323(7.3\%)}_{-0.0470(11\%)} \end{array}$	13.4% 14.3%
,	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

Expanded NWA:

- CP-even: 2.418 fb (-2.3 %)
- CP-mixed: 1.417 fb (-2.4%)
- CP-odd: 0.416 fb (-3.2 %)

Integrated fiducial cross-sections (LO)

Interpolation formula:

 $\sigma\left(\alpha_{CP}\right) = \cos^{2}\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}}^{2} \sigma_{1} + \sin^{2}\left(\alpha_{CP}\right) \kappa_{At\bar{t}}^{2} \sigma_{2} + \cos\left(\alpha_{CP}\right) \sin\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}} \kappa_{At\bar{t}} \sigma_{3} - +\cos\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}} \kappa_{HVV} \left(\alpha_{CP}\right) \sigma_{4} + \sin\left(\alpha_{CP}\right) \kappa_{At\bar{t}} \kappa_{HVV} \left(\alpha_{CP}\right) \sigma_{5} + \kappa_{HVV}^{2} \left(\alpha_{CP}\right) \sigma_{6}.$

 No interference between diagrams with CP-even and CP-odd Yukawa interactions
 No interference between diagrams with HVV and CP-odd Yukawa interactions
 No HVV couplings in NWA

Integrated fiducial cross-sections (LO)

Interpolation formula (without vanishing terms):

$$\sigma(\alpha_{CP}) = \cos^2(\alpha_{CP}) \kappa_{Ht\bar{t}}^2 \sigma_1 + \sin^2(\alpha_{CP}) \kappa_{At\bar{t}}^2 \sigma_2 + \cos(\alpha_{CP}) \kappa_{Ht\bar{t}} \kappa_{HVV} (\alpha_{CP}) \sigma_4 + \kappa_{HVV}^2 (\alpha_{CP}) \sigma_6$$

- First two terms are symmetric in α_{CP}
- Last term is either constant ($\kappa_{HVV} = 1$) or symmetric ($\kappa_{HVV} = \cos(\alpha_{CP})$) with respect to α_{CP}

Interference between diagrams with HVV and CP-even Yukawa interactions breaks the symmetry

	Off-shell	NWA
σ_1 [fb]	2.0643(4)	2.0388(2)
σ_2 [fb]	0.7800(1)	0.74583(7)
σ_3 [fb]	-0.0002(8)	-0.0001(3)
σ_4 [fb]	-0.0693(8)) –
σ_5 [fb]	-0.0001(9)	_
σ_6 [fb]	0.0363(9)	_

Integrated fiducial cross-sections (NLO)

Interpolation formula (without vanishing terms):

$$\sigma(\alpha_{CP}) = \cos^2(\alpha_{CP}) \kappa_{Ht\bar{t}}^2 \sigma_1 + \sin^2(\alpha_{CP}) \kappa_{At\bar{t}}^2 \sigma_2 + \cos(\alpha_{CP}) \kappa_{Ht\bar{t}} \kappa_{HVV} (\alpha_{CP}) \sigma_4 + \kappa_{HVV}^2 (\alpha_{CP}) \sigma_6$$

Problem: The virtual contributions do not factorise in this manner

 \rightarrow Interpolation much more complicated

The 'stransverse' mass - idea

The 'stransverse' mass - idea & definition

The 'stransverse' mass - distribution

• Not a 'hard' cut-off but drop-off is clearly visible

The 'stransverse' mass - distribution

Use b-jet + lepton instead of lepton as visible, massive 'particle'

- Problem: which jet is associated with which lepton?
 - take minimum of invariant
 b-jet + lepton mass
 combinations
 - minimize the sum of the two invariant masses to avoid combining one lepton with both b-jets

The 'stransverse' mass - definition

$$M_{T2}^{2} = \min_{\mathbf{p}_{T}^{\nu_{1}} + \mathbf{p}_{T}^{\nu_{2}} = \mathbf{p}_{T,\text{miss}}} \left[\max\{M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{1}}, \mathbf{p}_{T}^{\nu_{1}}\right), M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{2}}, \mathbf{p}_{T}^{\nu_{2}}\right)\} \right]$$

where
$$M_T^2 \left(\mathbf{p}_T^{(lb)_i}, \mathbf{p}_T^{\nu_i} \right) = M_{(lb)_i}^2 + 2 \left(E_T^{(lb)_i} E_T^{\nu_i} - \mathbf{p}_T^{(lb)_i} \mathbf{p}_T^{\nu_i} \right)$$

Lepton + b-jet combinations chosen such that $\ M_{(lb)_1} + M_{(lb)_2}$ is minimal

Fiducial cross sections

Slide by Daniel Stremmer

- $\sigma_{\text{LO,NNPDF31}} = 2.2130(2)^{+30.1\%}_{-21.6\%}$
- NLO QCD corrections ~20%
- 5% scale uncertainties
- 1% 2% PDF uncertainties
- All PDF sets are consistent

$$H_{T} = p_{T,b_{1}} + p_{T,b_{2}} + p_{T,e^{+}} + p_{T,\mu^{-}} + p_{T,miss} + p_{T,H}$$

Differential distributions

Slide by Daniel Stremmer

- NLO QCD corrections ~ 20% 35%
- Scale uncertainties reduced from $\sim 30\%$ at LO to 5% 10% at NLO

Differential distributions

Slide by Daniel Stremmer

- PDF uncertainties increases towards the tails
- Comparable in size to scale uncertainties in tails

Slide by Daniel Stremmer

Top quark modeling

	μ_0	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]
full off-shell	$H_T/2$	$2.2130(2)^{+30.1\%}_{-21.6\%}$	$2.728(2)^{+1.1\%}_{-4.7\%}$
	μ_{fix}	$2.3005(2)^{+30.8\%}_{-21.9\%}$	$2.731(2)^{+0.6\%}_{-5.4\%}$
NWA	$H_T/2$	$2.2235(2)^{+30.1\%}_{-21.6\%}$	$2.738(1)^{-3.0\%}_{-4.7\%}$
	μ_{fix}	$2.3074(2)^{+30.7\%}_{-21.9\%}$	$2.742(1)^{-3.8\%}_{-5.3\%}$
NWA_{LOdec}	$H_T/2$	-	$2.862(1)^{+6.3\%}_{-9.4\%}$
	μ_{fix}	-	$2.897(1)^{+5.1\%}_{-9.0\%}$

- Off-shell effects: $\sim 0.3\% 0.5\%$
- NWA_{LOdec} about $\sim 4\% 5\%$ larger than NWA
- NWA_{LOdec} about 5% larger scale uncertainties

Slide by Daniel Stremmer

Top quark modeling

- Off-shell effects $\sim 15\% 20\%$ in the tails
- NWA_{LOdec} further shape distortions

Initial-state b quark contribution

Slide by Daniel Stremmer

- Charge-blind: **b** and $\overline{\mathbf{b}}$ cannot be distinguished
- Charge-aware: **b** and $\overline{\mathbf{b}}$ can be distinguished

 $bar{b}
ightarrow g$ bb
ightarrow g, $ar{b}ar{b}
ightarrow g$ $bar{b}
ightarrow g$ bb
ightarrow b, $ar{b}ar{b}
ightarrow ar{b}$

	μ_0	$\sigma_{\rm nob}$ [fb]	$\sigma_{\rm aware}$ [fb]	$\sigma_{ m blind}$ [fb]	$\delta_{\rm aware}$	$\delta_{\rm blind}$
LO	$H_T/2$	$2.2130(2)^{+30.1\%}_{-21.6\%}$	$2.2169(2)^{+30.0\%}_{-21.5\%}$	$2.2170(2)^{+30.0\%}_{-21.5\%}$	0.18%	0.18%
NLO	$H_T/2$	$2.728(2)^{+1.1\%}_{-4.7\%}$	$2.734(2)^{+1.3\%}_{-4.8\%}$	$2.736(2)^{+1.3\%}_{-4.8\%}$	0.22%	0.29%
LO	μ_{fix}	$2.3005(2)^{+30.8\%}_{-21.9\%}$	$2.3044(2)^{+30.7\%}_{-21.9\%}$	$2.3045(2)^{+30.7\%}_{-21.9\%}$	0.17%	0.17%
NLO	μ_{fix}	$2.731(2)^{+0.6\%}_{-5.4\%}$	$2.738(2)^{+0.7\%}_{-5.1\%}$	$2.740(2)^{+0.7\%}_{-5.1\%}$	0.26%	0.33%

Bottom quark contribution negligible ~ 0.2% - 0.3%

13

Slide by Daniel Stremmer

Initial-state b quark contribution

- Bottom quark contributions enhanced in the tails of hadronic observables (3%)
- Only minor effects in angular distributions and non-hadronic observables