

LHCf Run II physics results in proton-proton collisions at $\sqrt{s} = 13$ TeV

Alessio Tiberio on behalf of the LHCf collaboration

Ultra-high-energy cosmic rays

Contribution from accelerators

LHC

Why forward?

Experimental setup

Neutrons in p-p at $\sqrt{s} = 13$ TeV

- Models do not reproduce the peak structure at η > 10.75 and underestimate the total cross section in this region
- For 8.65 < η < 10.75 either EPOS-LHC or SIBYLL 2.3 has the best agreement with data, depending on the pseudorapidity region

ICHEP 2022, Bologna (Italy), July 6-13, 2022

6

JHEP07 (2020) 016

Adriani et al.

Inelasticity in p-p at $\sqrt{s} = 13$ TeV

LUCC

 Neutron elasticity distribution is not well reproduced by any model (SIBYLL 2.3 better than others)

 Average neutron inelasticity is well reproduced with QGSJet II-04 and not far from the prediction of other models, except PYTHIA 8.212

ICHEP 2022, Bologna (Italy), July 6-13, 2022

Ò

Adriani et al.

JHEP07 (2020) 016

π° in p-p at $\sqrt{s} = 13$ TeV (preliminary)

8

- Good agreement between Arm1 and Arm2 data and between "Type I" and "Type II" events
- Arm2 acceptance covers the gaps in Arm1 data for $X_F < 0.6$ and extends the low- p_T coverage for $X_F >$ 0.6, while Arm1 extends the acceptance to higher p_T

η in p-p at $\sqrt{s} = 13$ TeV (preliminary)

 Better agreement with QGSJET, but still a factor
 ~2 difference at low X_F

ATLAS-LHCf combined analysis

- The number of tracks in the central region gives information on the type of collision
- Requiring no charged tracks in ATLAS for $|\eta| < 2.5$ a sample of low-mass diffractive events can be selected

Combined analysis with ATLAS (photons in p-p at $\sqrt{s} = 13$ TeV)

- Good agreement with EPOS-LHC for η > 10.94
- Best agreement with EPOS-LHC and PYTHIA 8.212DL for 8.81 < η < 8.99

Combined analysis with ATLAS (photons in p-p at $\sqrt{s} = 13$ TeV)

- The fraction of diffractive-like events differs between models
- Best agreement with EPOS-LHC for η > 10.94
- Best agreement with
 PYTHIA 8.212DL for
 8.81 < η < 8.99

Combined analysis with ATLAS: ongoing analysis

Study of multi parton interaction (MPI), as proposed in S. Ostapchenko et al, Phys. Rev. D 94, 114026

 Study of the correlation between the energy of a neutron detected by LHCf and the number of charged tracks detected by ATLAS in the central region

Future prospects

- Operation in **proton-proton** collisions at $\sqrt{s} = 13.6$ TeV
 - * Increase of π^0 and η statistics thanks to the upgrade of the readout electronics and a dedicated trigger scheme
 - ★ Allow the K⁰ analysis thanks to the increased statistics
 - ★ Joint acquisition with ATLAS planned
 - operation with roman pots (ALFA and AFP): hadronization of single diffractive events and Δ resonance (p+ π^0)
 - operation with ATLAS ZDC: improve hadron resolution from ~40% to ~20% (measurements of p- π cross section via one-pion exchange process)
- Operation in proton-oxygen and oxygen-oxygen collision (2023 or 2024)
 - best configuration to probe CR-atmosphere collision
 - direct measurement of nuclear modification factor (no background from ultra peripheral collisions as in p-Pb collisions)

backup

Detectors performance

- Two sampling and position sensitive calorimeters
- Tungsten + GSO scintillators
- Depth: 44 X₀, 1.6 λ
- Energy resolution:
 - < 3% (photons, E > 200 GeV)
 - ~ 40% (neutrons)

Arm 1

- Transverse size: 20 x 20 mm² and 40 x 40 mm²
- 4 x-y GSO bars layers
- Position resolution: 100 µm (photons, E > 200 GeV)

- Transverse size: 25 x 25 mm² and 32 x 32 mm²
- 4 x-y silicon µstrip layers
- Position resolution: 40 μm (photons, E > 200 GeV)

ICHEP 2022, Bologna (Italy), July 6-13, 2022

Arm 2

Event categories

ICHEP 2022, Bologna (Italy), July 6-13, 2022

Phys. Rev. D83 (2011) 054026

N_{μ} vs parameters

ICHEP 2022, Bologna (Italy), July 6-13, 2022

Best agreement with QGSJET and EPOS LHC for η > 10.94

 Good agreement with EPOS-LHC and PYTHIA 8.212 for 8.81 < η < 8.99 at energies below 3 TeV

Photons in p-p at $\sqrt{s} = 13$ TeV

Ö

Adriani et al.,

PLB

780 (2018) 233-

<u>5</u> 2007 000

Diffraction mass distribution

 $\Delta \eta \simeq -\ln(\xi_x)$

Q. D. Zhou et al., Eur. Phys. J. C (2017) 77:212

π^0 geometrical acceptance

Arm2 geometrical acceptance

ICHEP 2022, Bologna (Italy), July 6-13, 2022

Trigger logic

- "Shower" trigger
 - prescale factor: 14
 - ~100% efficiency for photons (E > 200 GeV)
 - ~70% efficiency for neutrons (E > 1 TeV)
- "Type I" trigger
 - prescale factor: 1
 - $-\pi^0$ with one photon in each calorimeter (efficiency ~98%)
 - η
- "High EM" trigger
 - prescale factor: 1
 - high energy photons (E > 1 TeV)
 - π^0 with both photons in the same calorimeter (efficiency ~97%)

Arm2 DAQ upgrade

- Replace aged electronics
 - lack of replacements for FOXI optical transmitters/receivers, control ring boards, ...
- Speed-up the readout by a factor ~10
 - Arm2 silion DAQ gives the main contribution to dead time (~1 ms)
 - GbEthernet (~1 Gbps) protocol will be used instead of FOXIchip protocol (~100 Mbps)

Arm2 DAQ upgrade

ICHEP 2022, Bologna (Italy), July 6-13, 2022