

#### Recent results on gamma-ray observation by the Tibet AS<sub>γ</sub> experiment



Masato TAKITA (ICRR, Univ. of Tokyo) For the Tibet ASγ Collaboration, ICRR, the University of Tokyo

July 9, 2022 @ICHEP2022 (Bologna, Italy)

# Outline

- Introduction
- The Tibet ASγ Experiment
- First detection of UHE (> 100 TeV)  $\gamma$  rays
- Sub-PeV diffuse  $\gamma$  rays from the Milky Way galaxy
- Future prospect and Summary

# **§** Introduction



10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>5</sup> 10<sup>-2</sup> 10-1 1 Cosmic-ray Energy (PeV)

✤ Wide energy range

Main component is proton \*

✤ Rate decreases to 1/1000 when energy is 10 times higher

As an open question, Did/Do "PeVatrons" really exist in our Galaxy?

**PeVatron: Cosmic superaccelerators** accelerating cosmic rays up to PeV energies

#### NASA/ESA/JHU/R.Sankrit & W.Blair



PeVatrons in past/present

Sub.Per

Earth

Cosmic rays interact with interstellar gas, and produce  $\gamma$  rays  $p + p \rightarrow X$ 's  $+ \pi^{\pm} + \pi^{0} \rightarrow 2\gamma$ ( $\gamma$ -ray energy is ~10% of cosmic ray's)

# § The Tibet ASγ experiment



#### Tibet AS<sub>Y</sub> Collaboration



M. Amenomori<sup>1</sup>, S. Asano<sup>2</sup>, Y. W. Bao<sup>3</sup>, X. J. Bi<sup>4</sup>, D. Chen<sup>5</sup>, T. L. Chen<sup>6</sup>, W. Y. Chen<sup>4</sup>, Xu Chen<sup>4,5</sup>, Y. Chen<sup>3</sup>, Cirennima<sup>6</sup>,
S. W. Cui<sup>7</sup>, Danzengluobu<sup>6</sup>, L. K. Ding<sup>4</sup>, J. H. Fang<sup>4,8</sup>, K. Fang<sup>4</sup>, C. F. Feng<sup>9</sup>, Zhaoyang Feng<sup>4</sup>, Z. Y. Feng<sup>10</sup>, Qi Gao<sup>6</sup>, A. Gomi<sup>11</sup>,
Q. B. Gou<sup>4</sup>, Y. Q. Guo<sup>4</sup>, Y. Y. Guo<sup>4</sup>, Y. Hayashi<sup>2</sup>, H. H. He<sup>4</sup>, Z. T. He<sup>7</sup>, K. Hibino<sup>12</sup>, N. Hotta<sup>13</sup>, Haibing Hu<sup>6</sup>, H. B. Hu<sup>4</sup>, K. Y. Hu<sup>4,8</sup>,
J. Huang<sup>4</sup>, H. Y. Jia<sup>10</sup>, L. Jiang<sup>4</sup>, P. Jiang<sup>5</sup>, H. B. Jin<sup>5</sup>, K. Kasahara<sup>14</sup>, Y. Katayose<sup>11</sup>, C. Kato<sup>2</sup>, S. Kato<sup>15</sup>, I. Kawahara<sup>11</sup>,
T. Kawashima<sup>15</sup>, K. Kawata<sup>15</sup>, M. Kozai<sup>16</sup>, D. Kurashige<sup>11</sup>, Labaciren<sup>6</sup>, G. M. Le<sup>17</sup>, A. F. Li<sup>4,9,18</sup>, H. J. Li<sup>6</sup>, W. J. Li<sup>4,10</sup>, Y. Li<sup>5</sup>,
Y. H. Lin<sup>4,8</sup>, B. Liu<sup>19</sup>, C. Liu<sup>4</sup>, J. S. Liu<sup>4</sup>, L. Y. Liu<sup>5</sup>, M. Y. Liu<sup>6</sup>, W. Liu<sup>4</sup>, X. L. Liu<sup>5</sup>, Y.-Q. Lou<sup>20,21,22</sup>, H. Lu<sup>4</sup>, X. R. Meng<sup>6</sup>,
Y. Meng<sup>4,8</sup>, K. Munakata<sup>2</sup>, K. Nagaya<sup>11</sup>, Y. Nakamura<sup>15</sup>, Y. Nakazawa<sup>23</sup>, H. Nanjo<sup>1</sup>, C. C. Ning<sup>6</sup>, M. Nishizawa<sup>24</sup>, R. Noguchi<sup>11</sup>,
M. Ohnishi<sup>15</sup>, S. Okukawa<sup>11</sup>, S. Ozawa<sup>25</sup>, L. Qian<sup>5</sup>, X. Qian<sup>5</sup>, X. L. Qian<sup>26</sup>, X. B. Qu<sup>27</sup>, T. Saito<sup>28</sup>, Y. Sakakibara<sup>11</sup>, M. Sakata<sup>29</sup>,
T. Sako<sup>15</sup>, T. K. Sako<sup>15</sup>, T. Sasaki<sup>12</sup>, J. Shao<sup>4,9</sup>, M. Shibata<sup>11</sup>, A. Shiomi<sup>23</sup>, H. Sugimoto<sup>30</sup>, W. Takano<sup>12</sup>, M. Takita<sup>15</sup>, Y. H. Tan<sup>4</sup>,
N. Tateyama<sup>12</sup>, S. Torii<sup>31</sup>, H. Tsuchiya<sup>32</sup>, S. Udo<sup>12</sup>, H. Wang<sup>4</sup>, Y. P. Wang<sup>6</sup>, Wangdui<sup>6</sup>, H. R. Wu<sup>4</sup>, Q. Wu<sup>6</sup>, J. L. Xu<sup>5</sup>, L. Xu<sup>9</sup>,
Z. Yang<sup>4</sup>, Y. Q. Yao<sup>5</sup>, J. Yin<sup>5</sup>, Y. Yokoe<sup>15</sup>, N. P. Yu<sup>5</sup>, A. F. Yuan<sup>6</sup>, L. M. Zhai<sup>5</sup>, C. P. Zhang<sup>5</sup>, H. M. Zhang<sup>4</sup>, J. L. Zhang<sup>4</sup>, X. Zhang<sup>3</sup>,
Ying Zhang<sup>9</sup>, Y. Zhang<sup>9</sup>, Y. Zhang<sup>4</sup>, Yi Zhang<sup>33</sup>, Ying Zhang<sup>4</sup>, S. P. Zhao<sup>4</sup>, Zhaxisangzhu<sup>6</sup>, X. X. Zhou<sup>10</sup> and Y. H. Zou<sup>4,8</sup>

1 Department of Physics, Hirosaki Univ., Japan.

2 Department of Physics, Shinshu Univ., Japan.

3 School of Astronomy and Space Science, Nanjing Univ., China.

4 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS, China.

5 National Astronomical Observatories, CAS, China.

6 Department of Mathematics and Physics, Tibet Univ., China.

7 Department of Physics, Hebei Normal Univ., China.

8 Univ. of Chinese Academy of Sciences, China.

9 Institute of Frontier and Interdisciplinary Science and Key Laboratory of

Particle Physics and Particle Irradiation (MOE), Shandong Univ., China.

10 Institute of Modern Physics, SouthWest Jiaotong Univ., China.

11 Faculty of Engineering, Yokohama National Univ., Japan.

12 Faculty of Engineering, Kanagawa Univ., Japan.

13 Faculty of Education, Utsunomiya Univ., Japan.

14 Faculty of Systems Engineering, Shibaura Institute of Technology, Japan.

15 Institute for Cosmic Ray Research, Univ. of Tokyo, Japan.

16 Polar Environment Data Science Center, Joint Support-Center for Data

Science Research, Research Organization of Information and Systems, Japan.

17 National Center for Space Weather, China Meteorological Administration, China.

18 School of Information Science and Engineering, Shandong Agriculture Univ., China.

19 Department of Astronomy, School of Physical Sciences, Univ. of Science and Technology of China, China.

20 Department of Physics and Tsinghua Centre for Astrophysics (THCA), Tsinghua Univ., China.

21 Tsinghua Univ.-National Astronomical Observatories of China (NAOC)

Joint Research Center for Astrophysics, Tsinghua Univ., China.

22 Department of Astronomy, Tsinghua Univ., China.

23 College of Industrial Technology, Nihon Univ., Japan.

24 National Institute of Informatics, Japan.

25 National Institute of Information and Communications Technology, Japan.

26 Department of Mechanical and Electrical Engineering, Shangdong

Management Univ., China.

27 College of Science, China Univ. of Petroleum, China.

28 Tokyo Metropolitan College of Industrial Technology, Japan.

29 Department of Physics, Konan Univ., Japan.

30 Shonan Institute of Technology, Japan.

31 Research Institute for Science and Engineering, Waseda Univ., Japan.

32 Japan Atomic Energy Agency, TJapan.

33 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, China.

### **Tibet Air Shower Array**

#### □ Site: Tibet (90.522°E, 30.102°N) 4,300 m a.s.l.

#### Present Performance

- # of detectors
- Effective area
- Angular resolution
- Energy resolution
- 0.5 m<sup>2</sup> x 597 ~65,700 m<sup>2</sup> ~0.5° @10TeV ~0.2° @100TeV ~40%@10TeV γ ~20%@100TeV γ

Observation of secondary (mainly e<sup>+/-</sup>, γ) in AS Primary energy : 2<sup>nd</sup> particle densities Primary direction : 2<sup>nd</sup> relative timings



### Underground Water Cherenkov Muon detectors

- ✓ 2.4m underground (~515g/cm<sup>2</sup> ~9 $X_0$ )
- ✓ 4 pools, 16 units / pool

Soil & Rocks 2.6m

Air 0.9m

Cherenkov lights

AS y

- ✓ 7.35m×7.35m×1.5m deep (water)
- ✓ 20" Φ PMT (HAMAMATSU R3600)

1.0m

20 inch

PMT

✓ Concrete pools + white Tyvek sheets



Reinforced concrete Waterproof & reflective materials

Basic idea: T. K. Sako+, Astropart. Phys. 32, 177 (2009) <sup>•</sup>

Water 1.5m

7.3m

e

Measurement of # of  $\mu$  in AS  $\rightarrow \gamma / CR$  discrimination

DATA: February, 2014 - May, 2017 Live time: 719 days

## § First detection of UHE (>100 TeV) γ rays



### Gamma-ray Emission from Crab





First detection of sub-PeV γ (5.6σ) UHE γ-ray astronomy started! Amenomori+, PRL, **123**, 051101, (2019)



AS y

# § Sub-PeV diffuse γ rays from the Milky Way galaxy





#### Event Distribution >100 TeV (Fig.1) Tight muon cut

Amenomori+., PRL 126, 141101,(2021)

Blue points: Tibet AS +MD (Circle size ∝ Energy)

Red plus marks: TeV sources (TeVCat catalog)

>0.398 PeV (10<sup>2.6</sup> TeV) 38 events in our FoV

→Not from known TeV sources!
 & No signal > 10 TeV around them
 Equatorial coordinates





#### Distribution of distance to the closest TeV source (deg) for events > 0.398 PeV

Amenomori+., PRL 126, 141101,(2021)



16



# Number of sub-PeV events observed by Tibet AS+MD array in the direction of galactic plane

#### 

(Eres ~ 10 % around 400 TeV & energy scale uncertainty ~13% in quadrature)

TABLE S1. Number of events observed by the Tibet AS+MD array in the direction of the galactic plane. The galactic longitude of the arrival direction is integrated across our field of view (approximately  $22^{\circ} < l < 225^{\circ}$ ). The ratios ( $\alpha$ ) of exposures between the ON and OFF regions are 0.135 for  $|b| < 5^{\circ}$  and 0.27 for  $|b| < 10^{\circ}$ , respectively.

|              |             | $ b  < 5^{\circ}$       |              |             | $ b  < 10^{\circ}$    |              |
|--------------|-------------|-------------------------|--------------|-------------|-----------------------|--------------|
| Energy bin   | $N_{ m ON}$ | $N_{ m BG}$             | Significance | $N_{ m ON}$ | $N_{ m BG}$           | Significance |
| $({ m TeV})$ |             | $(= \alpha N_{ m OFF})$ | $(\sigma)$   |             | $(= lpha N_{ m OFF})$ | $(\sigma)$   |
| 100 - 158    | 513         | 333                     | 8.5          | 858         | 655                   | 6.6          |
| 158 - 398    | 117         | 58.1                    | 6.3          | 182         | 114                   | 5.1          |
| 398 - 1000   | 16          | 1.35                    | 6.0          | 23          | 2.73                  | 5.9          |

TABLE S2. Galactic diffuse gamma-ray fluxes measured by the Tibet AS+MD array.

| Energy bin   | Representative $E$ | Flux $(25^{\circ} < l < 100^{\circ},  b  < 5^{\circ})$ | Flux $(50^{\circ} < l < 200^{\circ},  b  < 5^{\circ})$ |
|--------------|--------------------|--------------------------------------------------------|--------------------------------------------------------|
| $({ m TeV})$ | $({ m TeV})$       | $({\rm TeV^{-1}\ cm^{-2}\ s^{-1}\ sr^{-1}})$           | $({\rm TeV^{-1}\ cm^{-2}\ s^{-1}\ sr^{-1}})$           |
| 100 - 158    | 121                | $(3.16 \pm 0.64) \times 10^{-15}$                      | $(1.69 \pm 0.41) \times 10^{-15}$                      |
| 158 - 398    | 220                | $(3.88 \pm 1.00) \times 10^{-16}$                      | $(2.27 \pm 0.60) \times 10^{-16}$                      |
| 398 - 1000   | 534                | $(6.86 \ ^{+3.30}_{-2.40}) \ 	imes 10^{-17}$           | $(2.99 \ ^{+1.40}_{-1.02}) \ 	imes 10^{-17}$           |

#### Amenomori+., PRL 126, 141101,(2021)





# Energy Spectrum (Fig.4)

After excluding the contribution from the known TeV sources (within 0.5° in radius) listed in the TeV source catalog (~13% to the diffuse flux, but no contamination to events > 0.398 PeV)

The measured fluxes are reasonably consistent with Lipari's galactic diffuse gamma-ray model assuming the hadronic cosmic-ray origin.



Amenomori+., PRL 126, 141101,(2021)

#### *Models: Lipari & Vernetto, PRD 98, 143003, (2018)* 4 ev / 10 ev from

19

# **Cygnus Cocoon Region**

We found 4 events in the circle with radius 4°



![](_page_20_Figure_0.jpeg)

# Electron origin? vs Proton origin?

Tibet ASγ

![](_page_21_Picture_1.jpeg)

✓ Gamma rays are coming isolated from known gamma-ray sources.
 → Electrons lose their energy quickly, so they should stay near the object.
 → Protons don't lose energy and can escape farther from the object.

#### Strong evidence for sub-PeV $\gamma$ rays induced by cosmic rays

![](_page_22_Picture_0.jpeg)

# **Scientific Interpretation**

![](_page_22_Picture_2.jpeg)

✓ This is the first evidence for existence of PeVatrons, in the past and/or present Galaxy, which accelerate protons up to the Peta electron volt (PeV) region.

![](_page_23_Picture_0.jpeg)

Γibet ASγ

![](_page_23_Figure_1.jpeg)

✓ This work proves a theoretical model that cosmic rays produced by PeVatrons are trapped in the Galactic magnetic field for a long time forming a pool of cosmic rays.

### LHAASO Experiment (ICRC2021)

![](_page_24_Figure_1.jpeg)

### **Composition Dependence (ICRC2021)**

CRs interact with interstellar gas  $(\gamma$ -ray energy has 10% of CRs)

 $CR + ISM \rightarrow X's + \pi^0 \dots \rightarrow 2\gamma$ 

→ Diffuse gamma-ray spectrum depends on the CR composition

![](_page_25_Figure_4.jpeg)

Vernetto & Lipari (ICRC2021)

factor 1.5 – 2 difference @ ~600 TeV

## § Future Prospect & Summary

### UHE $\gamma$ -ray astronomy E > 100 TeV (ICRC2021)

![](_page_27_Figure_1.jpeg)

Draw the "Kifune" plot - the integral number of high energy sources detected as a function of year - in the style of a plot developed by Tadashi Kifune (for example http://adsabs.harvard.edu/abs/1996NCimC..19..953K). The data for the number of X-ray and HE (GeV) gamma-ray sources come from a page on HEASARC maintained by Stephen A. Drake (retrieved 2017-09-28) : https://heasarc.gsfc.nasa.gov/docs/heasarc/headates/how\_many\_xray.html The data for the number of VHE (TeV) gamma-ray sources is from TeVCat maintained by Deirdre Horan and Scott Wakely (retrieved 2017-09-28) : http://tevcat.uchicago.edu/

✓ Tibet AS $\gamma$  experiment opened a new energy window UHE (>100 TeV).

✓ A dozen of UHE  $\gamma$ -ray sources discovered (Tibet AS $\gamma$ , HAWC, LHAASO) in northern sky.

 $\rightarrow$  UHE  $\gamma$ -ray observatories necessary in southern hemisphere

# Go South! (e.g., ALPACA [2022-24], Mega ALPACA, SWGO, CTA, ...) & Neutrinos

![](_page_28_Picture_1.jpeg)

PeVatron hunting in Northern and Southern hemispheres
 Blackhole at the Galactic center ( A candidate of PeVatron)
 Hot gas bubble around the Galactic center

✓ Survey heavy dark matter search

![](_page_29_Picture_0.jpeg)

# Summary

Unraveling 60-Year-Old Mystery,

 $\checkmark$  Tibet AS $\gamma$  experiment: First detection of UHE (>100 TeV)  $\gamma$ -rays from Crab, 2019 and Opening of UHE  $\gamma$ -ray astronomy. -> Now, a dozen of UHE  $\gamma$ -ray sources discovered by Tibet AS<sub>Y</sub>, HAWC, LHAASO. Tibet ASγ experiment : First detection of sub-PeV diffuse gamma rays from our galaxy ->Evidence for existence of PeVatrons in past and /or present Milky Way galaxy ->Experimental verification for the theoretical model of high-energy "cosmic-ray pool" in Milky Way galaxy ✓ Future prospect: Go South! & Neutrinos

#### Back-up

# Gamma-like Event from the Crab

AS y

![](_page_31_Figure_1.jpeg)

K. Kawata +, Experimental Astronomy 44, 1 (2017) <sup>32</sup>

![](_page_32_Figure_0.jpeg)

After Nµ cut,~99.9% CR rejection & ~90%  $\gamma$  efficiency @100 TeV

![](_page_33_Picture_0.jpeg)

#### Relative muon number distribution for events > 0.398 PeV

![](_page_33_Figure_2.jpeg)

Amenomori+., PRL 126, 141101,(2021)

![](_page_34_Picture_0.jpeg)

#### Arrival Directions of the 38 events (> 0.398 PeV) See PRL supplemental materials

TABLE S3. Event IDs and arrival directions in the equatorial coordinates (Right Ascension, Declination) of the gamma-ray like events with 398 < E < 1000 TeV observed by the Tibet AS+MD array during period between February 2014 and May 2017.

| TASG         | R.A. J2000 | Dec. J2000 | - |
|--------------|------------|------------|---|
| Event ID     | (degrees)  | (degrees)  |   |
| TASG-D01-001 | 18.74      | 55.31      | - |
| TASG-D01-002 | 26.44      | 68.23      |   |
| TASG-D01-003 | 35.21      | 54.46      | A |
| TASG-D01-004 | 49.16      | 44.38      |   |
| TASG-D01-005 | 55.90      | 43.25      |   |
| TASG-D01-006 | 62.31      | 38.11      |   |
| TASG-D01-007 | 63.13      | 55.26      |   |
| TASG-D01-008 | 63.72      | 34.74      |   |
| TASG-D01-009 | 67.01      | 46.54      |   |
| TASG-D01-010 | 96.16      | 9.02       |   |
| TASG-D01-011 | 98.31      | 11.21      |   |
| TASG-D01-012 | 99.60      | 1.58       |   |
| TASG-D01-013 | 114.74     | -7.55      |   |
| TASG-D01-014 | 127.01     | 38.26      |   |
| TASG-D01-015 | 174.45     | 24.48      |   |
| TASG-D01-016 | 183.43     | 39.60      |   |
| TASG-D01-017 | 228.12     | 26.53      |   |
| TASG-D01-018 | 230.56     | 44.40      |   |
| TASG-D01-019 | 243.22     | 66.27      |   |
| TASG-D01-020 | 255.47     | 26.46      |   |
| TASG-D01-021 | 256.49     | 35.31      |   |
| TASG-D01-022 | 261.10     | 25.56      |   |
| TASG-D01-023 | 264.29     | 17.95      |   |
| TASG-D01-024 | 284.38     | 4.50       |   |
| TASG-D01-025 | 286.96     | 7.96       |   |
| TASG-D01-026 | 290.28     | 16.36      |   |
| TASG-D01-027 | 291.45     | 10.03      |   |
| TASG-D01-028 | 293.62     | 20.36      |   |
| TASG-D01-029 | 295.63     | 2.30       |   |
| TASG-D01-030 | 297.17     | 13.82      |   |
| TASG-D01-031 | 305.44     | 44.21      |   |
| TASG-D01-032 | 307.08     | 39.02      |   |
| TASG-D01-033 | 308.69     | 43.92      |   |
| TASG-D01-034 | 309.49     | 51.05      |   |
| TASG-D01-035 | 312.33     | 40.23      |   |
| TASG-D01-036 | 320.32     | 49.46      |   |
| TASG-D01-037 | 354.97     | 49.65      |   |
| TASG-D01-038 | 359.96     | 59.19      |   |

Amenomori+., PRL 126, 141101,(2021)