

Properties of cosmic Deuterons and ³He C. Delgado (CIEMAT) On behalf of the AMS-02 Collaboration

Deuterium and Helium Isotopes in Cosmic Rays

Helium nuclei are the second most abundant nuclei in cosmic rays.

²H and ³He are mostly produced by the fragmentation of ⁴He, allowing a simpler comparison with propagation models than with heavier secondary to primary nuclei ratios.

The small cross section of He with respect to heavier nuclei, allows ²H/⁴He and ³He/⁴He to probe the properties of diffusion at larger distances than any secondary to primary ratio.

In addition the difference A/Z ratios of ²H and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

Datasample

From May 2011 to May 2021

Total exposure time 2.2e8 seconds

Z=1

Selected events	Above cutoff	Protons	Deuterons
8.7 10 ⁹	5.0 10 ⁹	4.8 10 ⁹	1.0 10 ⁸

Z=2

Selected events	Above cutoff	⁴ He	³ He
1.2 10 ⁹	7.2 10 ⁸	6.6 10 ⁸	6.9 10 ⁷

He & H Isotopes identification in AMS

He & H Isotopes identification in AMS Whole data samples

He & H Isotopes identification in AMS Analysis methodology

Global fit of R vs β for each datasample with a common

He & H Isotopes identification in AMS Analysis methodology

Global fit of R vs β for each datasample with a common

He & H Isotopes identification in AMS **Separation results**

RICH aerogel data

RICH NaF data

TOF data

³He Flux

²H Flux

Time evolution RMS of data compared with total error

Time evolution is not compatible with systematics below ~5 GV

Preliminary results. Please refer to the forthcoming publication in PRL

Flux ratios

Preliminary results. Please refer to the forthcoming publication in PRL

Evolution with time (R<5 GV)

Preliminary results. Please refer to the forthcoming publication in PRL

Summary

AMS-02 measured the ³He and ²H fluxes using 10 years of data in the rigidity range from 2GV to 20 GV.

Below ~5GV solar modulation induces a time evolution of the the measured fluxes larger than the systematics of the measurement.

Above ~5GV the ratio of ³He and ²H to ⁴He are compatible with a power law function. The spectral indexe seem to be different for the two species.

Below ~5GV the fluxex time evolution are qualitatively similar to those of ⁴He. However we observe a slighly different relative amplitude of the two species.

The end