

Properties of Cosmic Beryllium Isotopes

Jiahui Wei

Shandong Institute of Advanced Technology

On behalf of the AMS collaboration

07/07/2022

Primary and Secondary Cosmic Rays

Primary cosmic rays (p, He, C, O, ...) are mostly produced during the lifetime of stars and are accelerated in supernovae shocks.

Secondary cosmic nuclei (Li, <u>Be</u>, B, ...) are produced by the collisions of primary cosmic rays and interstellar medium.

Cosmic Beryllium Isotopes

- Recent studies of cosmic ray propagation using ¹⁰Be→¹⁰B can be found in
 - Evoli, C., Morlino, G., Blasi, P., & Aloisio, R., 2020, PRD, 101(2), 023013.
 - N. Weinrich, M. Boudaud, L. Derome, Y. Génolini, J. Lavalle, D. Maurin, P. Salati, P. Serpico, G. Weymann-Despres, 2020, A&A 639, A74
- ¹⁰Be/⁹Be provides more sensitive measurement of the age of cosmic rays.

\rightarrow AMS is able to measure Be isotopes up to 12 GeV/n (\sim 30 GV).

Measurement of Be Isotopes with AMS-02

$$M = \frac{RZ}{\beta\gamma}, \qquad \gamma = 1/\sqrt{1-\beta^2}$$

- *R* measurement :
 - Tracker, $\Delta R/R \sim 10\%$ at 10 GV
- β measurements:

	E _{kn} range (GeV/n)	$\Delta \beta / \beta$
TOF (4 layers)	(0.5, 1.2)	~ 1.5%
RICH-NaF (n=1.33)	(0.8, 4.0)	~ 0.15%
RICH-AGL (n=1.05)	(3.0, 12)	~ 0.05%

Measurement of Be Isotopes with AMS-02

 $\Delta M \sim 1$ a.m.u. \rightarrow Unable to do event-by-event isotope identification

Mass Template Fit Method

- Isotopic abundances obtained from mass template fit carried out in difference energy ranges.
- Mass templates are based on Monte Carlo simulation validated by data.

Validation of Mass Templates

- Mass templates can be validated using samples selected by the geomagnetic cutoff.
- Samples containing only one isotope, lighter isotopes are shielded.

Validation of Fragmentation Cross Sections

- The fragmentation background is not negligible in the Be sample.
- The knowledge of nuclei interaction cross sections is important.
- Using AMS material as the target, the fragmentation cross sections are validated.
- With the mass template fit technique, isotopic cross sections can also be validated.

Fragmentation Background

Charge measurements at

L1 - UTOF - Inner Tracker - LTOF

ensure negligible fragmentation background below L1.

- Selections defined to identify and reduce fragmentation events.
- Background mainly from the fragmentation of heavier nuclei above Tracker L1.

 \rightarrow The total fragmentation background is ${\sim}2\%$ in the energy range of measurements.

Beryllium Isotopic Fluxes

- Based on 0.4 million beryllium events.
- Combined three analyses using TOF, lacksquare**RICH-NaF and RICH-AGL.**

→ First measurement of ⁷Be, ⁹Be and ¹⁰Be fluxes above 0.5 GeV/n and up to 12 GeV/n.

 10^{-2}

 10^{-3}

 10^{-1}

AMS02

din 1

 10^{-1}

Webber(1979)

⁷Be

⁹Be

10¹

11

Preliminary data, refer to upcoming AMS publication

100

 E_{kn} [GeV/n]

Beryllium Isotopic Flux Ratios

 ⁹Be/⁷Be and ¹⁰Be/⁹Be flux ratios and comparison with previous experiments:

- \rightarrow First measurement of
- ⁹Be/⁷Be flux ratios above 0.5 GeV/n.
- ¹⁰Be/⁹Be flux ratios above 2 GeV/n.

Fitting the ¹⁰Be/⁹Be Flux Ratios

 Galactic diffusion halo size L fitted on AMS02 data with an analytical formula:

(D. Maurin et al., arXiv:2203.07265)

- Precision on *L* from AMS02 data $\Delta L_{AMS02} \sim 0.2 \text{ kpc.}$
- Error dominated by uncertainty from production cross-section (1 kpc).

Conclusions

- The method based on mass template fit to study cosmic-ray isotopes with AMS-02 was presented.
- In the energy range of 0.5 GeV/n up to 12 GeV/n, the following preliminary results were presented:
 - ⁷Be, ⁹Be and ¹⁰Be fluxes;
 - ⁹Be/⁷Be and ¹⁰Be/⁹Be flux ratios.
- The measurement of cosmic-ray Beryllium isotopes provides important information to measure the age of cosmic rays.