Electroweak phase transition in the Z_3 -invariant NMSSM: Implications of LHC and Dark matter searches and prospects of detecting the gravitational waves

Subhojit Roy

Harish-Chandra Research Institute Allahabad, India

Based on JHEP06(2022)108

ICHEP 2022

July 7, 2022

Requirements for EWBG

Baryon asymmetry parameter
$${
m Y}_B\equiv rac{n_B}{s}\sim rac{1}{7.04}rac{n_B}{n_\gamma}\sim 10^{-10}$$

Three necessary ingredients needed to create a baryon asymmetry (Sakharov's conditions):

SFOPT and NMSSM

Bosonic dof add extra cubic terms to the finite temperature effective potential.

light squarks (as bosons loop contribution) are needed to satisfy SFOEWPT in MSSM. \longrightarrow Ruled out from LHC direct search conditions

singlet extention NMSSM could satisfy SFOEWPT without light squarks of MSSM due to additional tree-level cubic interaction $(\widehat{S}\widehat{H}_{u},\widehat{H}_{d})$ plus thermal loop corrections. extra one CP -even (h_S) and CP -odd state (a_S) in the neutral Higgs sector and one $\mathcal{W} = \mathcal{W}_{\text{MSSM}}|_{\mu=0} + \lambda \widehat{S} \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$ additional neutralino state, called singlino (\widetilde{S}) $\lambda < S > \hat{H}_u \cdot \hat{H}_d \to \mu_{eff} \hat{H}_u \cdot \hat{H}_d$ $m_{h_{SM}}^2 = m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta_{\text{mix}} + \Delta_{\text{rad.corr}}$ Solution to the well-known ' μ '-problem $-\mathcal{L}^{\text{soft}} = -\mathcal{L}^{\text{soft}}_{\text{MSSM}}|_{B\mu=0} + m_S^2 |S|^2 + (\lambda A_\lambda S H_u \cdot H_d + \frac{\kappa}{3} A_\kappa S^3 + \text{h.c.}).$ Extra tree-level correction in NMSSM. 125 GeV Higgs mass without significant Additional tree-level cubic terms radiative corrections at relatively larger λ Larger trilinear couplings increase the tree-level cubic terms Ellwanger et al., Phys.Rept. 496 (2010) 1-77

Pietroni, 9207227

SFOPT and NMSSM

FT loop calculation prefers relatively light singlet-like $m_{a_S,h_S} \rightarrow \text{Relatively low } \kappa, A_{\kappa}$ and doublet-like $m_{A,H} \rightarrow \text{ low } A_{\lambda}$ Higgs masses which tend to Become EWPT first order and strong

> Carena et al., Phys.Rev.D 85 (2012) 036003 Kozaczuk et al., Phys.Rev.D 87 (2013) 7, 075011 Huang et al, Phys.Rev.D 91 (2015) 2, 025006

$$\begin{split} V_{\text{Total}} &= V_{\text{Tree}} + V_{\text{CW}}^{1\text{-loop}} + V_{\text{counter terms}} + V_{\text{T}}^{1\text{-loop}} + V_{\text{daisy}} \\ & (-1)^{F} g_{i} \frac{T^{4}}{2\pi^{2}} J_{\text{B/F}} \left(\frac{m_{i}^{2}(\Phi)}{T^{2}} \right) \\ & \begin{cases} J_{B}^{\text{high}-T}(y^{2}) = -\frac{\pi^{4}}{45} + \frac{\pi^{2}}{12} y^{2} - \frac{\pi}{6} y^{3} - \frac{1}{32} y^{4} \log \left(\frac{y^{2}}{a_{b}} \right) \\ J_{F}^{\text{high}-T}(y^{2}) = \frac{7\pi^{4}}{360} - \frac{\pi^{2}}{24} y^{2} - \frac{1}{32} y^{4} \log \left(\frac{y^{2}}{a_{f}} \right) \end{cases}, \end{split}$$

Electroweakino searches put constraints on the the parameter space of the relatively low μ_{eff} (Higgsino-like states) with relatively lighter bino, singlino-like states.

Allowed primary sample

All points pass relevant Higgs and Dark Matter constraints

Significant amount of SFOEWPT favoured parameter space is ruled out

Electroweakino searches at the LHC would rule out more parameter points

Disallowed scenarios with low μ_{eff}

Inputs/Observables	BP-D1	BP-D2 BP-D3		
$\lambda, \kappa, \tan \beta$	0.683, 0.060, 4.77	0.547, 0.044, 2.87	0.565, 0.071, 2.87	
$A_{\lambda}, A_{\kappa} $ (GeV)	-1352.3, 134.5	978.4, -110.0	963.5, -112.5	
$\mu_{\text{eff}}, M_1 (\text{GeV})$	-274.4, 478.8	308.0 , 460.3	308.0, -57.2	
$m_{\chi^0_{1,2,3,4},\chi^{\pm}_{1}}$ (GeV)	60.9, -304.3, 307.9, 479.4, -284.1	60.6, 312.7, -338.3, 468.1, 316.3	-59.6, 91.1, 327.2, -338.4, 316.0	
$m_{h_1, h_2, a_1, H^{\pm}}$ (GeV)	79.2, 124.4, 126.6, 1359.0	78.1, 122.2, 109.5, 963.8	86.9, 123.0, 142.6, 963.6	
Ωh^2	4.9×10^{-4}	4.4×10^{-4}	4.8×10^{-3}	
$\sigma^{\rm SI}_{\chi^0_1 - p(n)} \times \xi \ (\rm cm^2)$	$4.5(4.6) \times 10^{-47}$	$2.4(2.5) \times 10^{-47}$	$2.5(2.6) \times 10^{-47}$	
$\sigma^{\rm SD}_{\chi^0_1 - p(n)} \times \xi \ (\rm cm^2)$	$3.5(3.2) \times 10^{-42}$	$7.6(5.8) \times 10^{-43}$	$1.9(1.5) \times 10^{-43}$	
First T_c (GeV)	129.4 / 1st-order	151.5 / 1st-order	165.7 / 1st-order	
$\{h_d, h_u, s\}_{ t False_vac.}$ (GeV)	$\{0, 0, 0\}$	$\{0, 0, 0\}$	$\{0, 0, 0\}$	
$\left\{ {{h_d},{h_u},s} ight\}_{{{{ m{True}}}_{{ m{vac}}}}}$ (GeV)	$\{25.5, 145.6, -474.4\}$	$\{0, 0, 539.9\}$	$\{0, 0, 557.5.9\}$	
Second T_c (GeV)	_	112.7 / 2nd-order	105.6 / 1st-order	
$\{h_d,h_u,s\}_{ t False_vac.}$ (GeV)	-	$\{0, 0, 661.7\}$	$\{0, 0, 662.3\}$	
$\{h_d,h_u,s\}_{ t True_vac.}$ (GeV)	_	$\{9.5, 31.5, 668.2\}$	$\{12.8, 41.6, 669.0\}$	
T_n (GeV) (Nucleation)	No nucleation	96.2 / 1st-order	55.9 / 1st-order	
$\{h_d, h_u, s\}_{\texttt{False_vac.}}$ (GeV)	_	$\{0, 0, 0\}$	$\{0, 0, 0\}$	
$\{h_d, h_u, s\}_{\texttt{True_vac.}}$ (GeV)	_	$\{67.0, 197.8, 774.8\}$	$\{68.1, 199.2, 759.2\}$	
$\gamma_{\rm EW} = \Delta_{SU(2)}/T_n$	_	2.2	3.8	
CheckMATE result	Excluded	Excluded	Excluded	
r-value	1.12	1.01	2.13	
Analysis ID	CMS_SUS_16_039	CMS_SUS_16_039	CMS_SUS_16_039	
Signal region ID	SR_A30	SR_A30	$SR_{-}G05$	

'Nucleation is More than Critical' Baum et al., JHEP 03 (2021) 055

Exclusion of Parameter space of $\mu_{eff} \lesssim$ 300 GeV with light singlino/bino -like states from the electroweakino searches.

Allowed benchmark scenarios

Input/Observables	BP-A1	BP-A2	BP-A3
$\lambda, \kappa, \tan eta$	0.609, 0.326, 1.98	0.633, 0.216, 1.79	0.523, 0.041, 3.65
$A_{\lambda}, A_{\kappa} $ (GeV)	477.0, 37.8	-558.7, -46.3	-1253.9, 138.1
$\mu_{\rm eff}, M_1 ~({ m GeV})$	421.8, 365.1	-398.7, 286.3	-334.5, -143.8
$m_{\chi^0_{1,2,3,4},\chi^{\pm}_1}$ (GeV)	-360.9, 415.1, -447.5, 493.2, 431.5	284.5, -289.5, -421.8, -426.9, -412.1	-61.3, -139.2, -359.3, 359.7, -345.3
$m_{h_1,h_2,a_1,H^{\pm}}$ (GeV)	$122.7, \ 449.0, \ 79.0, \ 818.4$	126.9, 288.5, 84.8, 800.9	$74.0, \ 124.7, \ 121.0, \ 1293.3$
Ωh^2	0.107	0.119	1.96×10^{-3}
$\sigma^{\rm SI}_{\chi^0_1 - p(n)} \times \xi \ (\rm cm^2)$	$7.2(7.6) \times 10^{-48}$	$1.2(1.2) \times 10^{-46}$	$4.1(4.3) \times 10^{-47}$
$\sigma^{\rm SD}_{\chi^0_1 - p(n)} \times \xi \ (\rm cm^2)$	$9.4(7.3) \times 10^{-42}$	$3.5(2.8) \times 10^{-42}$	$1.1(0.8) \times 10^{-41}$
CheckMATE result	Allowed	Allowed	Allowed
<i>r</i> -value	0.08	0.14	0.55
Analysis ID	$CMS_SUS_16_039$	CMS_SUS_16_039	CMS_SUS_16_039
Signal region ID	SR_A08	SR_A28	SR_A31

Relatively larger mueff pass the constraints from the electroweakino seraches in LHC

LSP DM can be highly bino or singlino-like and its relic abundance can fall within the Planck-observed band.

Under favorable circumstances, upwards of μ_{eff} ~335 GeV could survive

Pattern of Phase Transition

BM	T_n	$\{h_d, h_u, h_s\}_{\text{false}}$	Transition	$\{h_d, h_u, h_s\}_{true}$	$\gamma_{ m EW}$
No.	(GeV)	(GeV)	type	$({ m GeV})$	$= \frac{\Delta_{SU(2)}}{T_n}$
BP-A1	945.6	$\{0, 0, 0\}$	FO	$\{0, 0, 66.2\}$	
DI -AI	86.2	$\{0, 0, 1000.8\}$,,	$\{57.1, 112.5, 1000.3\}$	1.46
BP-A2	644.3	$\{0, 0, 0\}$,,	$\{0, 0, -104.8\}$	
	94.5	$\{0, 0, -914.9\}$,,	$\{48.5, 85.6, -914.8\}$	1.04
BP-A3	116.9	$\{0, 0, 0\}$	"	$\{30.3, 113.8, -877.4\}$	1.01

For μ_{eff} on the larger side, a two-step phase transition is a more likely phenomenon with the first transition taking place in the singlet field direction followed by the other in the SU(2) field directions.

This is somewhat typical when the trivial and the global minima have a large separation between them in the field space. This is since a larger μ_{eff} corresponds to a larger v_S at zero temperature for a given λ , a feature that governs the field-separation at T_C .

Gravitational waves from FOPT

 $\Omega_{\rm GW}h^2 \simeq \Omega_{\phi}h^2 + \Omega_{\rm sw}h^2 + \Omega_{\rm turb}h^2$

sourced by collisions of bubble walls Kosowsky, et. al., PRL 69 (1992) 2026; PRD 45 (1992) 4514 Huber, Konstandin, JCAP 0809 (2008) 022 sourced by plasma sounds waves (usually the dominent one) Hindmarsh, et. al., PRL 112 (2014) 041301; Hindmarsh, Hijazi, JCAP 12 (2019) 062

sourced by plasma turbulence

Gogoberidze, et. al., PRD 76 (2007) 083002 Caprini, at. al., JCAP 0912 (2009) 024

Important quatities:

$$\alpha = \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}^*} = \frac{1}{\rho_{\text{rad}}^*} \left[T \frac{\dot{\Delta} V(T)}{T} - \Delta V(T) \right] \Big|_{T_n}$$
Related to the energy budget of the FOPT
$$\beta = -\frac{dS_3(T)}{dt} \Big|_{t_n} \simeq H_n T_n \frac{d(S_3(T)/T)}{dT} \Big|_{T_n}$$
Related to the inverse duration of the transition
$$v_w \longrightarrow \text{the wall-velocity of the expanding bubble}$$

BP No.	$T_n \; (\text{GeV})$	lpha	β/H_n
BP-A1	945.9	2.15×10^{-5}	1.19×10^7
	86.2	4.33×10^{-2}	1.21×10^3
BP-A2	644.3	1.12×10^{-4}	$2.06 imes 10^6$
	94.5	1.82×10^{-2}	3.71×10^4
BP-A3	116.9	8.63×10^{-2}	2.22×10^2

Plots of GW energy density spectrum within and beyond the bag model with respect to frequency Gaise, et. al, JCAP 07 (2020)057

The peak of GW spectrum lies within the sensitivity of various future proposed GW experiments

However, the SNR values are not found to be healthy enough to guarantee a positive detection in LISA and BBO.

Conclusion

The physics of the EWPT (and hence EWBG) becomes intricately connected to the DM and collider (LHC) phenomenologies.

Due to DM and collider constraints the SFOEWPT favoured parameter space (light μ_{eff}) is in tension. Electroweakino searches at the LHC pushes μ_{eff} towards higher side.

EWPT could still remain to be of strong, first-order type even for μ_{eff} as large as ~ 425 GeV

Two-step phase transition is a more likely phenomenon at larger μ_{eff}

Satisfying all experimental constraints SFOEWPT is still possible in NMSSM

The GW signals resulting from the strong FOPTs in these scenarios are likely to remain too weak to be detected at future dedicated experiments.