Colour-kinematics duality, double copy, and homotopy algebras

Tommaso Macrelli
tmacrelli@phys.ethz.ch
ETH Zurich
8 July 2022

Based on joint work with L Borsten, B Jurčo, H Kim, C Saemann, M Wolf 2007.13803 [Phys.Rev.Lett.], 2102.11390 [Fortsch.Phys.], 2108.03030, 220X.XXXXX

Flash review of CK duality and double copy

- n-points L-loops YM amplitude as sums of trivalent graphs

$$
\mathcal{A}_{n, L}^{\mathrm{YM}}=\sum_{i} \int \prod_{l=1}^{L} \mathrm{~d}^{d} p_{l} \frac{1}{S_{i}} \frac{C_{i} N_{i}}{D_{i}}
$$

- i ranges over all trivalent L-loops graphs
- C_{i} : colour factor, composed of gauge group structure constants
- N_{i} : kinematic factor, composed of Lorentz-invariant contractions of polarisations and momenta

Flash review of CK duality and double copy

- Generalised gauge transformation

$$
N_{i} \mapsto N_{i}+\Delta_{i}, \quad \sum_{i} \int \prod_{l=1}^{L} \mathrm{~d}^{d} p_{l} \frac{1}{S_{i}} \frac{C_{i} \Delta_{i}}{D_{i}}=0
$$

Bern-Carrasco-Johansson colour-kinematics duality (2008)

There is a choice of kinematic factors such that N_{i} s obey the same algebraic relations (e.g., Jacobi identity) of the corresponding C_{i}

- True at tree-level, conjectured for loop-level
- If true, it would allow us to compute gravity amplitudes from YM ones

Flash review of CK duality and double copy

Yang-Mills double copy

If CK duality holds true, replacing the colour factor with a copy of the kinematic factor in $\mathcal{A}_{n, L}^{\mathrm{YM}}$ produces a $\mathcal{N}=0$ supergravity amplitude

$$
\mathcal{A}_{n, L}^{Y M}=\sum_{i} \int \prod_{l=1}^{L} \mathrm{~d}^{d} p_{l} \frac{1}{S_{i}} \frac{C_{i} N_{i}}{D_{i}} \rightarrow \mathcal{A}_{n, L}^{\mathcal{N}}=0=\sum_{i} \int \prod_{l=1}^{L} \mathrm{~d}^{d} p_{l} \frac{1}{S_{i}} \frac{\tilde{N}_{i} N_{i}}{D_{i}}
$$

- All-loop statement, the problem is then to validate CK duality at loop level
- Until now, on-shell scattering amplitude approach
- Homotopy algebras provide a natural setting for colour-kinematics factorisation and off-shell, Lagrangian double copy

Homotopy algebras

- Informally, homotopy algebras are generalisations of classical algebras (e.g., associative, Lie) where the respective structural identities (e.g., associativity, Jacobi identity) hold up to homotopies

Classical algebra	Homotopy algebra
Associative algebra	A_{∞}-algebra
Associative commutative algebra	C_{∞}-algebra
Lie algebra	L_{∞}-algebra

- Homotopy structures are ubiquitous in Physics: while homotopy algebras emerged in the context of string field theory, they were later recognized as underlying structures of every Lagrangian field theory

BV formalism

- Batalin-Vilkovisky (BV) formalism is the bridge between (quantum) field theories and homotopy algebras
- To quantize a classical theory means to make sense of the path integral

$$
\int_{\mathfrak{F}} \mu_{\mathfrak{F}}(\Phi) \mathrm{e}^{\frac{i}{\hbar} S[\Phi]}
$$

- Standard approach: BRST formalism
- If the symmetries close off-shell, then BRST formalism is enough for quantization

BV formalism

- In the case of open symmetries, BRST complex is a complex only up to e.o.m.
- The BV quantisation is a sophisticated machinery, that allows us to gauge-fix and quantize these complicated field theories
- We extend the BRST complex to a BV complex, doubling the field content of the theory

$$
\mathfrak{F}_{\mathrm{BV}}=T^{*}[1] \mathfrak{F}_{\mathrm{BRST}}
$$

- Fields Φ^{A} are local coordinates on $\mathfrak{F}_{\text {BRST }}$, antifields Φ_{A}^{+}are fibre coordinates. As a cotangent bundle, $\mathfrak{F}_{\text {BV }}$ comes with a natural symplectic structure and Poisson brackets $\{-,-\}$

BV formalism

BV formalism and L_{∞}-algebras

- The BV complex is dually described by an L_{∞}-algebra
- An L_{∞}-algebra is a differential graded vector space equipped with multibrackets (higher products), that satisfy a generalization of Jacobi identity
- Underlying every Lagrangian field theory is an L_{∞}-algebra that encodes the whole classical theory (symmetries, fields, equations of motion, Noether identities...)
- Every L_{∞}-algebra is equivalent (quasi-isomorphic) to a differential graded Lie algebra (strictification theorem)
- Analogous results for $A_{\infty^{-}}$and C_{∞}-algebras

BV - -algebras and CK duality

- Consider a differential graded Lie algebra $\mathfrak{L}^{\text {st }}$ associated to Yang-Mills theory
- Factorize into the gauge algebra \mathfrak{g} and a differential graded commutative algebra $\mathfrak{C}^{\text {st }}$

$$
\mathfrak{L}^{s t}=\mathfrak{g} \otimes \mathfrak{C}^{s t}
$$

- $\mathbb{C}^{\text {st }}$ contains binary bracket m_{2} of degree 0

$$
m_{2}: \text { field } \times \text { field } \rightarrow \text { antifield }
$$

- Kinematic algebra: we want to define a new bracket of degree -1 : extend $\mathfrak{C}^{\text {st }}$ to a BV^{\square}-algebra

BV - -algebras and CK duality

A BV-algebra is a graded vector space \mathfrak{B}, equipped with

- Hodge triple (d, h, \square)

$$
\text { fields } \underset{h}{\stackrel{d}{\rightleftarrows}} \text { antifields } \quad d h+h d=\square
$$

- graded commutative product m_{2} of degree 0
- a new product $\{-,-\}$ of degree -1

$$
\left\{v_{1}, v_{2}\right\}=h m_{2}\left(v_{1}, v_{2}\right)-m_{2}\left(h\left(v_{1}\right), v_{2}\right)-(-1)^{\left|v_{1}\right|} m_{2}\left(v_{1}, h\left(v_{2}\right)\right)
$$

- and more technical stuff

BV- -algebras and CK duality

A strictified gauge field theory with differential graded Lie algebra $\mathfrak{L}^{\text {st }}$ is
manifestly CK-dual if and only if there is a factorisation $\mathfrak{L}^{\text {st }}=\mathfrak{g} \otimes \mathfrak{C}^{\text {st }}$ such
that $\mathfrak{C}^{\text {st }}$ can be enhanced to a BV^{\square}-algebra.

BV-algebras and double copy

YM theory: $\mathfrak{L}^{\mathfrak{s t}}=\mathfrak{g} \otimes \mathfrak{B}$. Naively: we want to replace \mathfrak{g} with a copy of \mathfrak{B}

- In the factorization $\mathfrak{g} \otimes \mathfrak{C}, \mathfrak{g}$ can be thought as a BV^{\square}-algebra
- There is a notion of tensor product between two BV^{\square}-algebras

$$
\mathfrak{L} \subset \mathfrak{B}_{1} \otimes \mathfrak{B}_{2}
$$

- Inspired by string theory: $\mathcal{H}_{\text {closed }}=\mathcal{H}_{\text {open }} \otimes \mathcal{H}_{\text {open }}$
- Section condition: states $|p, \ldots\rangle \otimes|p, \ldots\rangle$
- Level matching: $\left(b_{0}-\tilde{b}_{0}\right)|\psi\rangle=0,\left(L_{0}-\tilde{L}_{0}\right)|\psi\rangle=0$

BV-algebras and double copy

- String theory: Hodge triple $d=Q_{\mathrm{BRST}}, h=b_{0}, \square=L_{0}$
- Field theory: Hodge triple $d=m_{1}, h=[1]$, $\square=\square$
- Tensor product $\mathfrak{B}_{1} \otimes \mathfrak{B}_{2}$: implementation of section condition and level matching
- A strictified field theory with differential graded Lie algebra $\mathfrak{L}^{\text {stt }}$ is manifestly CK-dual if and only if it factorises into a tensor product of BV-algebras

BV-algebras and double copy

Given two BV^{\square}-algebras, tensor product combines them into a differential graded algebra: syngamy

Outlook

- Mathematical formulation of kinematic algebra, CK duality and double copy in terms of homotopy algebras
- Lagrangian incarnation of CK duality and double copy
- Generalisation to the non-strict case: BV_{∞}-algebras
- Toolbox to build and study a growing zoo of double copy theories
- Computational efficiency?
- Link to string theory

Thank you for listening!

