A new mechanism for symmetry breaking from nilmanifolds

Aldo Deandrea
IP2I - Université Lyon I

ICHEP 2022 - July 7th 2022

based on JHEP 05 (2020) 122 (2002.11128); Phys.Lett.B 829 (2022) 137097 (2201.01151) and Nucl.Phys. B (2022) 2202.11437 in collaboration with D.Andriot, A.Cornell,F.Dogliotti, D.Tsimpis

Introduction and motivation

Exploring negative curvature compact geometries as a tool for model building at intermediate scale (relevant for unification and EW scales)

Important differences wrt flat compact extra dimensions Spectrum of the modes
Symmetry breaking
Scalar potential
Example: Gauge-Higgs unification models
Standard approach uses tori as compact space (here negative curvature)
Masses for the scalars are generated at loop level for the torus (here at tree level)

Nilmanifold

A Lie algebra is nilpotent if its lower central series terminates in the zero sub-algebra

$$
[\mathfrak{g},[\mathfrak{g}, \ldots,[\mathfrak{g},[\mathfrak{g}, \mathfrak{g}]] \ldots]=0
$$

Nilmanifold is a differentiable manifold diffeomorphic to the quotient space N / H, the quotient of a nilpotent Lie group N modulo a closed subgroup H .

Nilmanifold

nilpotent Lie algebra ex. Heisenberg algebra:

$$
\left[V_{1}, V_{2}\right]=-f V_{3},\left[V_{1}, V_{3}\right]=\left[V_{2}, V_{3}\right]=0
$$

with $f \in \mathbb{R}$ and coordinate system

$$
d e^{3}=\mathrm{f} e^{1} \wedge e^{2} ; d e^{1}=0 ; d e^{2}=0
$$

$$
\begin{gathered}
e^{1}=r^{1} d x^{1} ; \quad e^{2}=r^{2} d x^{2} ; e^{3}=r^{3}\left(d x^{3}+N x^{1} d x^{2}\right) \\
\text { where } \quad N=\frac{r^{1} r^{2}}{r^{3}} f \in \mathbb{N} .
\end{gathered}
$$

Why nilmanifold?

Heisenberg manifold \Leftrightarrow 2-torus with twisted circle fiber Calculable spectrum of the Laplace operator $\Delta \mathrm{f}=\lambda \mathrm{f}$ Eigenfunctions form a complete set on the space:

$$
f(x)=\sum_{i} c_{i} U_{i}(x)
$$

$$
\Delta \mathrm{B}_{\mathrm{m}}=\lambda \mathrm{B}_{\mathrm{m}}
$$

Eigenscalars and one-forms have analytical expressions To make the manifold compact:

$$
\begin{aligned}
& x^{1} \sim x^{1}+n^{1} ; x^{2} \sim x^{2}+n^{2} ; x^{3} \sim x^{3}+n^{3}-n^{1} N x^{2} \\
& n^{1}, n^{2}, n^{3} \in\{0,1\}
\end{aligned}
$$

From 7D Yang-Mills to 4D

The effective action is computed from the 7 D YM action :

$$
\mathcal{L}_{4 D}=\int d y^{3} \mathcal{L}_{7 D} ; \mathcal{L}_{7 D}=\frac{1}{2} \operatorname{Tr}\left(F_{M N} F^{M N}\right)
$$

$$
\begin{aligned}
\mathcal{A}^{a} & =\mathcal{A}_{M}^{a}\left(x^{M}\right) \mathrm{d} x^{M}=\mathcal{A}_{\mu}^{a}\left(x^{M}\right) \mathrm{d} x^{\mu}+\mathcal{A}_{m}^{a}\left(x^{M}\right) \mathrm{d} x^{m} \\
& =\sum_{I} U_{I}\left(x^{m}\right) A_{\mu}^{a I}\left(x^{\mu}\right) \mathrm{d} x^{\mu}+\phi^{a I}\left(x^{\mu}\right) B_{I m}\left(x^{m}\right) \mathrm{d} x^{m}
\end{aligned}
$$

where U_{I} and B_{I} are respectively 3 d eigenscalars and 3 d eigen-oneforms of the Laplacian on the nilmanifold, while $A^{a I}$ and $\phi^{\text {aI }}$ are a 4 d one-form and a 4 d scalar.

From 7D Yang-Mills to 4D

The sum over I is an infinite multi-index sum over the basis of 3 d eigenforms, the geometrical limit ("large base, small fiber" limit)

$$
|\mathbf{f}| \ll \frac{1}{r^{i}}, i=1,2,3 \quad \Rightarrow \quad r^{3} \ll r^{1,2}
$$

separates the low-lying masses from the rest of the tower
The resulting 4 D action "generates" a scalar part:

$$
S=\int \mathrm{d} x^{4} \operatorname{Tr}\left(-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+\sum_{i=1}^{3} D_{\mu} \phi^{i} D^{\mu} \phi^{i}-M^{2}\left(\phi^{3}\right)^{2}-\mathcal{U}\right)
$$

Lowest modes

Scalars:

$$
U_{I=1}=\frac{1}{\sqrt{V}} ; \quad \lambda_{U_{1}}=0
$$

one-forms:

$$
\begin{array}{ll}
B_{I=1}=\frac{1}{\sqrt{V}} e^{1} ; & \lambda_{B_{1}}=0 \\
B_{I=2}=\frac{1}{\sqrt{V}} e^{2} ; & \lambda_{B_{2}}=0 \\
B_{I=3}=\frac{1}{\sqrt{V}} e^{3} ; & \lambda_{B_{3}}=\mathrm{f}^{2}
\end{array}
$$

other modes:

$$
\left(m_{\text {tower }}\right)^{2} \sim \frac{1}{\left(r^{i}\right)^{2}}
$$

Scalar potential

$$
\mathcal{U}=\operatorname{Tr}\left(-2 i g M\left[\phi^{1}, \phi^{2}\right] \phi^{3}+\frac{1}{2} \mathrm{~g}^{2} \sum_{i, j=1}^{3}\left[\phi^{i}, \phi^{j}\right]\left[\phi^{i}, \phi^{j}\right]\right)
$$

with $\mathrm{M}=|\mathrm{f}|$ and $\mathrm{g}=\mathrm{g} 7 / \sqrt{V}$; scalars in the adjoint representation. We have to minimise the potential (mass + interaction part)

$$
\frac{\mathcal{V}}{M^{2}}=\operatorname{Tr}\left(\phi^{3}\right)^{2}+\frac{\mathcal{U}}{M^{2}}
$$

computing $\delta \mathscr{V} / M^{2}$ and the masses from $\delta^{2} \mathscr{V} / M^{2}$
Vacuum condition: $\phi 3=0 ;[\phi 1, \phi 2]=0$
\Rightarrow Pick $\phi 1, \phi_{2} \in$ Cartan sub-algebra.
The mass matrix is block diagonal in root space

Once the mass matrix is diagonalized, the masses for a given root E α are :

$$
\left.0\left(m_{\alpha}^{ \pm}\right)^{2}=\frac{1}{2} M^{2}\left(1+2\left(\left(b_{1}^{\alpha}\right)^{2}+\left(b_{2}^{\alpha}\right)^{2}\right)\right) \pm \sqrt{\left.1+4\left(\left(b_{1}^{\alpha}\right)^{2}+\left(b_{2}^{\alpha}\right)^{2}\right)\right)}\right)
$$

gauge boson masses

lifted by loop corrections

$$
\begin{aligned}
m_{\alpha, \text { gauge }}^{2} & =\mathrm{g}^{2} \sum_{I=1}^{2} \phi_{0}^{I i} \alpha_{i} \\
& =M^{2}\left(\left(b_{1}^{\alpha}\right)^{2}+\left(b_{2}^{\alpha}\right)^{2}\right)
\end{aligned}
$$

In this convention the vacuum parameters b_{i} are dimensionless, so that $\mathrm{b}_{\mathrm{i}}=\mathrm{Mg} \tilde{b}_{i}$, and \tilde{b}_{i} has mass dimension one. In the following $\mathrm{b}_{\mathrm{r}}=\mathrm{b}_{2}=\mathrm{b}$

$\operatorname{SU}(3)$-> $\operatorname{SU}(2) \mathrm{xU}(1)$

One-loop renormalized masses of the low-mass scalars for the $\mathrm{SU}(3)$ breaking pattern. H_{r} and X_{μ} are in the fundamental representation of $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$, while $\phi \mathrm{SU}_{(2)}$ is the adjoint of $\mathrm{SU}(2)$ and $\phi \mathrm{U}(\mathrm{r})$ in the adjoint of $\mathrm{U}(\mathrm{I})$.

Conclusion

- Twist $\mathrm{f} \Leftrightarrow$ Mass at tree level M
- Potential allows for various symmetry breaking
- Model is rigid (Yang-Mills in 7D + nilmanifold)
- Analytical results all the way for any gauge group G (but G may be constrained by physical motivations)
- Moduli of the metric on the Heisenberg manifold computed
- Laplacian spectrum for scalars/vectors with arbitrary metric solved for the lowest modes
- Dirac operator with arbitrary metric solved, fermions can be considered both in 7D (bulk) and 4D (localised)

