Automation of Antenna Subtraction in Colour Space

Matteo Marcoli

ICHEP 2022

Bologna 08/07/2022

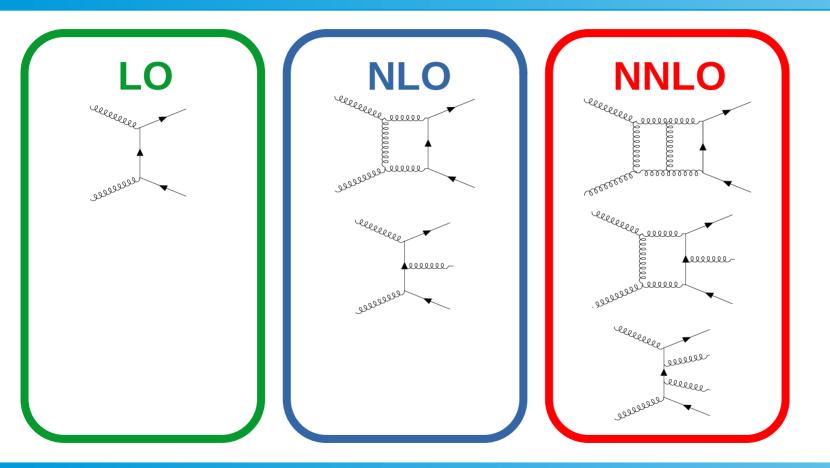
arXiv: hep-ph/2203.13531

with X. Chen, T. Gehrmann, N. Glover, A. Huss

Swiss National Science Foundation

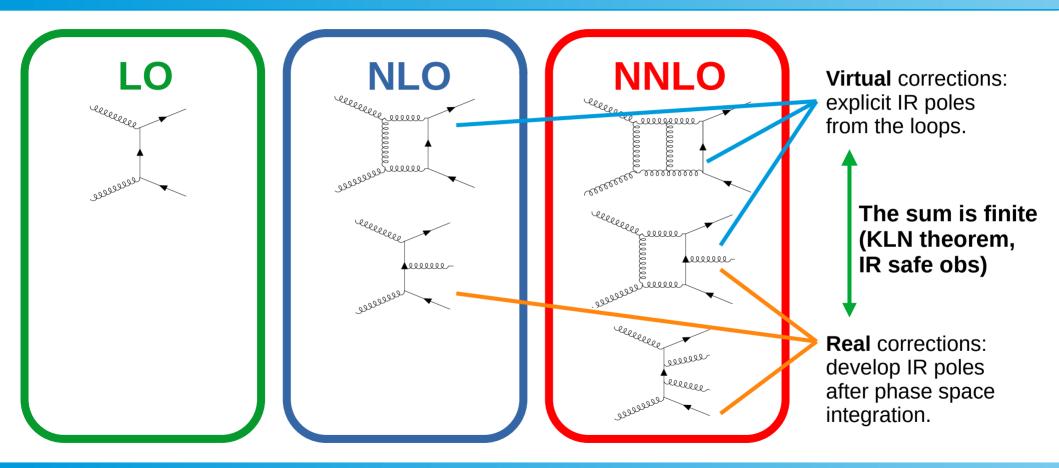
European Research Council Established by the European Commission

Fixed Order Calculations



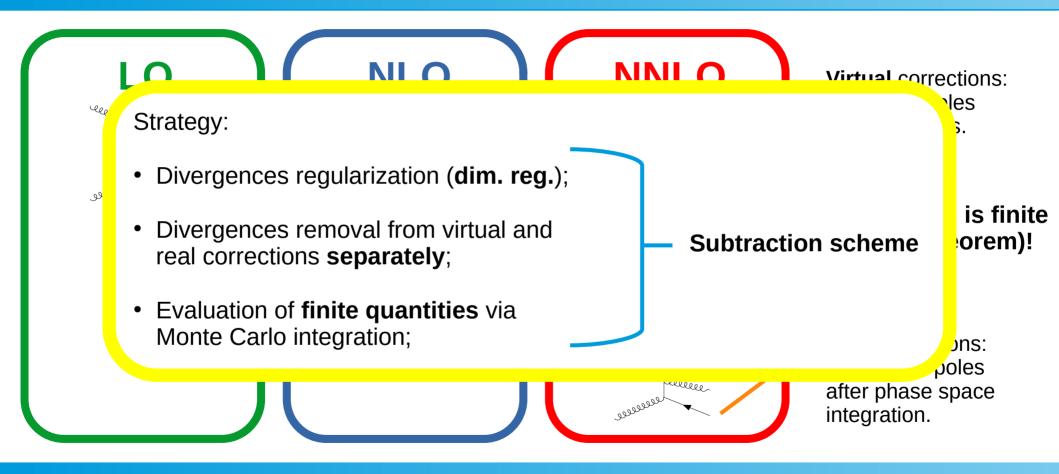
ICHEP 2022

Fixed Order Calculations

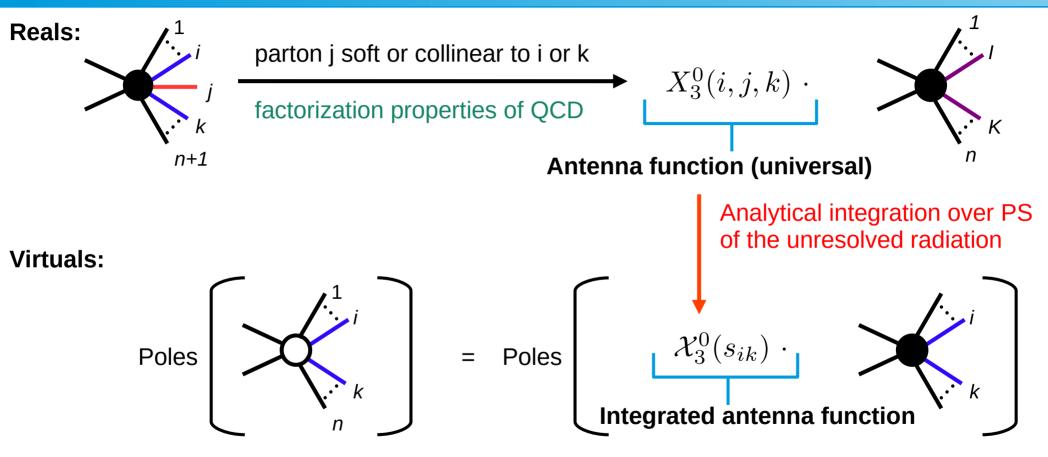


ICHEP 2022

Fixed Order Calculations



Antenna Subtraction (NLO)



ICHEP 2022

Many succesful applications at NNLO in the past decade: Zj, Hj, Wj, VBF, VH, y, yj, yy, jj, VHj.

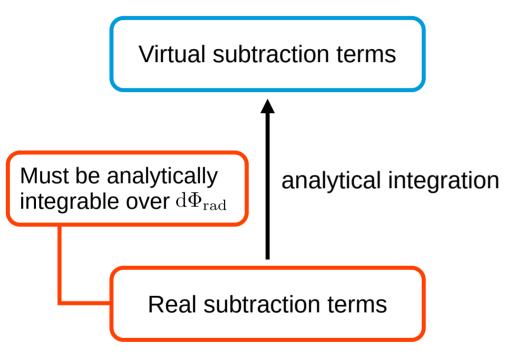
Limitations:

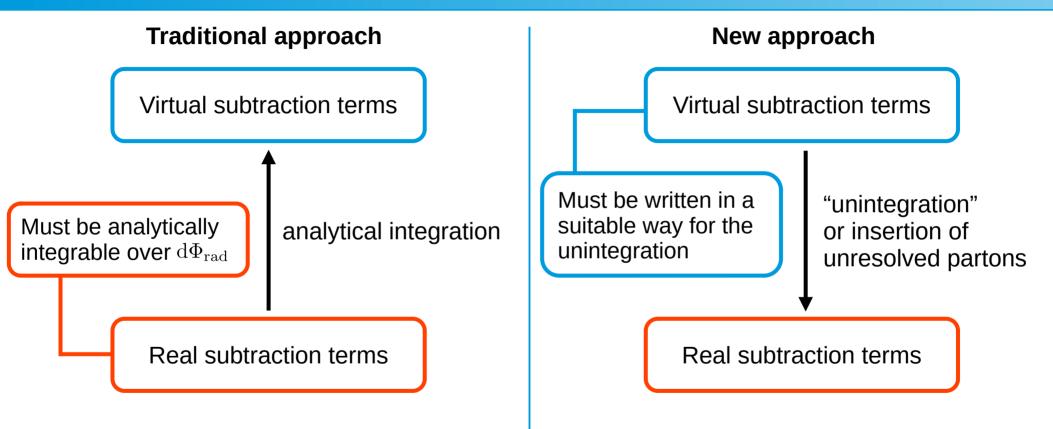
- Poor scaling with the number of external partons n_p .
- Highly non-trivial construction of subtraction terms for $n_p \ge 4$.

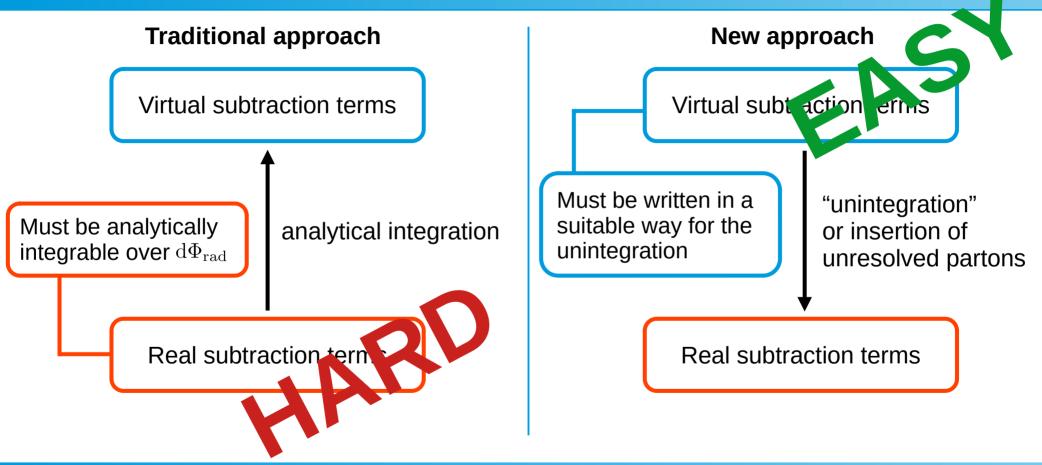
A new formulation is required:

- automation and efficiency;
- improved understanding/organization of the subtraction infrastructure;
- go beyond $n_p = 4$.

Traditional approach

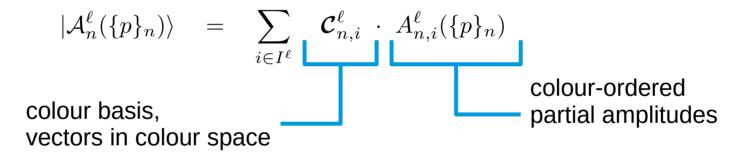






Colour space

The IR singularity structure of loop amplitudes in QCD is best described in **colour space**. An n-parton *l*-loop QCD amplitude can be written as:



Colour space

IR singularity structure of (renormalised) one- and two-loop amplitudes:

 $|\mathcal{A}_{n}^{1}\rangle = \boldsymbol{I}^{(1)}(\epsilon, \mu_{r}^{2})|\mathcal{A}_{n}^{0}\rangle + \text{ finite terms}$

 $|\mathcal{A}_n^2\rangle = \mathbf{I}^{(1)}(\epsilon, \mu_r^2) |\mathcal{A}_n^1\rangle + \mathbf{I}^{(2)}(\epsilon, \mu_r^2) |\mathcal{A}_n^0\rangle + \text{finite terms}$

 $I^{(1)}$ and $I^{(2)}$ are infrared insertion operators in colour space:

$$\boldsymbol{I}^{(1)}(\boldsymbol{\epsilon}, \boldsymbol{\mu}_r^2) = \sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j \right) \mathcal{I}^{(1)}_{ij}(\boldsymbol{\epsilon}, \boldsymbol{\mu}_r^2)$$

$$\begin{split} \boldsymbol{I}^{(2)}(\boldsymbol{\epsilon}, \mu_r^2) &= -\frac{1}{2} \sum_{(i,j)} \sum_{(k,l)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j \right) \left(\boldsymbol{T}_k \cdot \boldsymbol{T}_l \right) \mathcal{I}^{(1)}_{ij}(\boldsymbol{\epsilon}, \mu_r^2) \mathcal{I}^{(1)}_{kl}(\boldsymbol{\epsilon}, \mu_r^2) \\ &- \frac{b_0 N_c}{\boldsymbol{\epsilon}} \sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j \right) \mathcal{I}^{(1)}_{ij}(\boldsymbol{\epsilon}, \mu_r^2) + \sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j \right) \mathcal{I}^{(2)}_{ij}(\boldsymbol{\epsilon}, \mu_r^2) \end{split}$$

[Catani '98] [Bern, De Freitas, Dixon '03] [Becher, Neubert '09]

- Colour charge dipole structure;
- Retain full colour correlations;
- Universal;

We exploit this to write down the IR singularities of loop matrix elements as:

 $Poles\left\{|\mathcal{M}_{n}^{1}|^{2}\right\} = Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{1}|\mathcal{A}_{n}^{0}\rangle\right\} = 2Poles\left\{\langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle\right\}$

 $Poles\left\{|\mathcal{M}_{n}^{2}|^{2}\right\} = Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{2}|\mathcal{A}_{n}^{0}\rangle + \langle\mathcal{A}_{n}^{1}|\mathcal{A}_{n}^{1}\rangle\right\} = 2Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{1}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle - \langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}\otimes\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle - \frac{\beta_{0}N_{c}}{\epsilon}\langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle + \langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(2)}|\mathcal{A}_{n}^{0}\rangle\right\}$

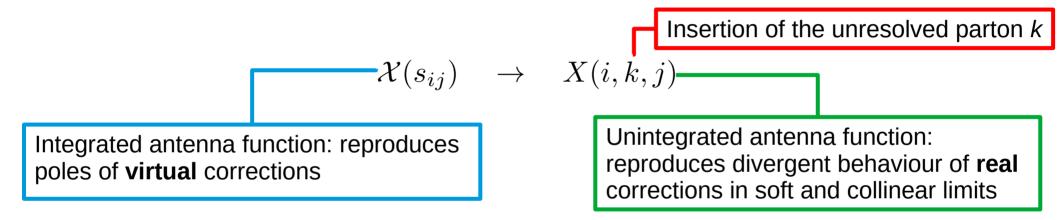
 $\mathcal{J}^{(1)}$ and $\mathcal{J}^{(2)}$ are analogous to $\mathbf{I}^{(1)}$ and $\mathbf{I}^{(2)}$, but are constructed using integrated antenna functions:

- exact extraction of virtual IR poles;
- explicit connection with real IR divergences via the correspondence of integrated and unintegrated antenna functions;

The structure of the IR divergences for real emissions is obtained from the previous expressions replacing integrated antenna functions with their unintegrated counterparts:

$$\mathcal{X}(s_{ij}) \rightarrow X(i,k,j)$$

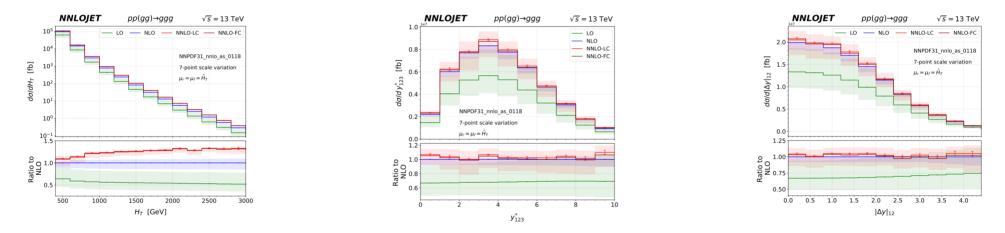
The structure of the IR divergences for real emissions is obtained from the previous expressions replacing integrated antenna functions with their unintegrated counterparts:



- Cancellation of IR divergences;
- Systematic generation of the subtraction infrastructure;
- Knowledge of all the antenna functions is crucial;

Status

- Colorful antenna subtraction: a formalism to achieve a systematic and automatable extraction of IR singularities at NNLO for any number of external partons;
- Successful calculation of $gg \rightarrow ggg$ at NNLO in the **gluons-only** assumption (see 2203.13531);



 Work in progress towards full 3-jet production at NNLO: complete establishment of this approach;

Thanks for your attention!