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Introduction

This talk is based on joint work with I.Coman and J.Teschner.

The main subject is the study of nonperturbative phenomena in 4d N = 2 QFT beyond the
weak-coupling regime.

In this talk I will discuss a new approach to explore strongly-coupled dynamics, where standard
techniques such as localization cannot be applied.



4d N = 2 Yang-Mills

The N = 2 Yang-Mills Lagrangian is (τ = θ/2π + 4πi/g2 and G = SU(2))

L =
1

8π
Im
(∫

d2θ τ WαWα +

∫
d2θd2θ̄ 2τ Φ†e−2V Φ

)
=

1

g2
Tr
(
− 1

4
FµνF

µν + g2
θ

32π2
Fµν F̃

µν + (Dµφ)†(Dµφ)− 1

2
[φ†, φ]2

− i λσµDµλ̄− i ψ̄σ̄µDµψ − i
√

2[λ, ψ]φ† − i
√

2[λ̄, ψ̄]φ
)

Coulomb branch: This theory has a moduli space of vacua B, parameterized by φ ∼ a σ3,
where SU(2) is spontaneously broken to U(1).
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The effective Lagrangian is governed by a ‘prepotential’ function F

L =
1

8π
Im
(∫

d2θF ′′(Φ)WαWα + 2

∫
d2θd2θ̄F ′(Φ)Φ†

)
where F = Fpert. + Finstanton

Fpert. =
i

2π
a2 ln

a2

Λ2

Finstanton =

∞∑
k=1

Fk
(

Λ

a

)4k

a2

Instanton terms Fk
I Not determined by symmetry alone

I Cannot be computed by perturbation theory
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The Seiberg-Witten prepotential

A conjectural computation of Fk in terms of periods of a Riemann surface Σ [Seiberg Witten]

γ = (e,m) ∈ H1(Σu,Z) Zγ(u) =
1

π

∮
γ

λ(u)

a :=
1

π

∮
α

λ = Ze aD :=
1

π

∮
β

λ = Zm

aD =
∂F
∂a

A key feature of this solution, is the presence of singularities

new massless d.o.f. ↔ different low energy descriptions

3 / 11



The Seiberg-Witten prepotential

A conjectural computation of Fk in terms of periods of a Riemann surface Σ [Seiberg Witten]

γ = (e,m) ∈ H1(Σu,Z) Zγ(u) =
1

π

∮
γ

λ(u)

a :=
1

π

∮
α

λ = Ze aD :=
1

π

∮
β

λ = Zm

aD =
∂F
∂a

A key feature of this solution, is the presence of singularities

new massless d.o.f. ↔ different low energy descriptions

3 / 11



The Seiberg-Witten solution has 2 different types of singularity on B: [Figure from Lerche 9611190]

I A weak-coupling singularity, where MW± = 0 ⇒ SU(2) Yang-Mills

I A strong-coupling singularity, where Mmonopole = 0 ⇒ U(1)magnetic QED
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Instanton counting

At weak-coupling, the Seiberg-Witten solution can be verified by direct computation of
instanton contributions via localization in the Omega-background. [Nekrasov]

Zinst(a, ~; q) =
∑
Y1,Y2

q|Y1|+|Y2|
∏
i,j

a+ ~(Y1,i − Y2,j + j − i)
a+ ~(j − i)

I Leading order in ~ recovers SW prepotential: lim~→0 lnZinst(a, ~; q) = 1
~2Finst(a,Λ)

I Zinst contains much more: higher ~-orders ∼ gravitational couplings.

I Validity limited to weak-coupling: localization uses the Yang-Mills description.

Question: What is the analogue of Zinst at strong coupling?
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Geometrization of instanton partition functions

Main result: a geometric definition of Zinst that recovers the weak coupling result from
localization, but also extends to strong coupling where it agrees with FD,inst as ~→ 0.

[Coman PL Teschner]

Quantum curves:

Seiberg-Witten curve Σ  

differential operator[
~2∂2x − qν(x, ~)

]︸ ︷︷ ︸
Dν

ψ(x) = 0

classical periods  quantum periods
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Isomonodromic tau function

Quantum periods µ are transcendental functions of moduli ν of the quantum curve Dν .

µ = µ(ν)

But they are overparameterized: ν ∼ (µ, t). There are isomonodromic deformations

µ(ν0) = µ(ν1)

if ν0, ν1 are related by a non-autonomous Hamiltonian flow ν(t) defined by

∂tν = {H, ν} for a certain H(ν) .

The tau function is defined, up to rescaling by monodromy data τ → f(µ) · τ , by

∂t log τ(µ, t) = H(µ, t)
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Tau function and instantons

The tau function encodes instanton partition functions. [Gamayun Iorgov Lisovyy]

τ ↗
↘

τ (w)(σ, η; Λ) =
∑
n∈Z

e4πin η Z
(w)
pert(σ + n)Z

(w)
inst (σ + n,Λ) weak (Λ→ 0)

τ (s)(ν, ρ; Λ) =
∑
n∈Z

e4πiρn Z
(s)
pert(ν + in,Λ)Z

(s)
inst(ν + in,Λ) strong (Λ→∞)

Adopting specific coordinates for monodromy data, µ = (σ, η) gives a Fourier-expansion
that recovers the weak-coupling Zinst [Gavrylenko Lisovyy]

Remarkably, there exists another set of coordinates (ν, ρ), that gives a different kind of
Fourier-expansion valid at strong coupling [Its Lisovyy Tykhyy]

Turned around, this can be taken as a definition of Zinst at strong coupling!
[Bonelli Lisovyy Maruyoshi Sciarappa Tanzini]
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Instanton counting from tau functions

Our goals:

1. Explain this observation.

2. Turn it into a systematic definition of instanton counting in strong-coupling regimes,
valid for all theories of class S[A1].

Key questions:

I What defines the distinguished coordinates (σ, η), (ν, ρ)?

I How are τ (w) and τ (s) related exactly?

I How does this example generalize to other 4d N = 2 QFTs?
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The general picture

We outline a prescription to quantize Seiberg-Witten curves of general theories of class S[A1].

Isomonodromic deformations:
I Encoded by the introduction of apparent singularities in Dν .
I Governerd by the isomonodromy tau-function τ(µ, t).

Coordinates and charts: [Gaiotto Moore Neitzke] [Hollands Neitzke]

I Patches in B × C∗~ defined by WKB Stokes graphs for Dν .
I Coordinates from quantum periods, computed as Borel sums of Voros symbols.

Normalization of τ in each chart: [Coman PL Teschner]

I Charts define a line bundle, transition functions are defined by coordinates
χ(x′ + 1, x) = e−2πiy

′
χ(x′, x), χ(x′, x+ 1) = e2πiyχ(x′, x) .

I τ is a section, which renormalizes from weak to strong coupling

τ ′(x′, y′; Λ) = χ(x′, x)τ(x, y; Λ) .
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Results

Our construction defines, for any class S[A1] theory:

1. Charts Ur ⊂ B × C∗ covering the entire moduli space/dynamical range of the theory.

2. Distinguished coordinates (xr, yr), together with relations among charts.

3. A line bundle over B × C∗~, with given transition functions.

4. A distinguished section τ , with appropriate renormalization across charts

τ (r
′) = χr′,r(µ) · τ (r)

5. A chart-wise Fourier decompositions induced by distinguished coordinates

τ (r)(xr, yr,Λ) → Z
(r)
inst(xr,Λ) .

In conclusion, this is our definition of Zinst at strong coupling, and beyond.

It recovers results of [Gamayun Iorgov Lisovyy] [Gavrylenko Lisovyy] [Its Lisovyy Tykhyy] [Coman Pomoni Teschner] [...].
But it also extends to all other patches of moduli space, for the entire class S[A1] theories.
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Thank You.
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