The limits of the strong CP problem

Carlos Tamarit, Technische Universität München

Phys.Lett.B 822 (2021) 136616 2001.07152 [hep-th]

in collaboration with

Wen-Yuan AiKing's College London

Björn Garbrecht TUM

Juan S. Cruz CP³-Origins

The aim:

Challenge the conventional view of the strong CP problem by showing that a careful **infinite 4d volume** limit implies that **QCD does not violate CP** regardless of the value of the θ **angle**

The plan:

Fundamentals of the strong CP problem

Fermion correlators from cluster decomposition and the index theorem

Fundamentals of the strong CP problem

The QCD θ angle

$$S_{\text{QCD}} = \int d^4x \left[-\frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{g^2 \theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} + \sum_{i=1}^{N_f} \overline{\psi}_i \left(i \gamma^\mu D_\mu - m_i e^{i\alpha_i \gamma_5} \right) \psi_i \right] .$$

 θ -term is a total derivative and thus corresponds to a boundary term

it can never contribute in perturbation theory:

effects of θ are nonperturbative

 S_{θ} is **CP-odd!**

Yet no CP violation has been observed in the strong interactions: Strong CP problem

$$|d_n| < 1.8 \times 10^{-26} e \cdot cm$$
 [nEDM collaboration 2020]

What do we need for CP violation?

Need **interfering contributions** to amplitudes with **misaligned phases** (otherwise one could redefine all phases away)

- **Phases** of **perturbative** contributions fixed by $lpha_i$
- lacksquare naively expected to give additional phases $\exp(-S_{
 m QCD}^{
 m E})\propto \exp({
 m i}\Delta n heta)$
- We need to compute correlators and see if they depend on both types of CP-odd phases (α_i and θ) or not

Carlos Tamarit (

Towards correlators: vacuum path integral

$$\int_{\phi_i,\phi_f,T} \left(\prod \mathcal{D}\phi \right) e^{iS_T} = \langle \phi_f | e^{-iHT} | \phi_i \rangle = \sum_n e^{-iE_n T} \langle \phi_f | n \rangle \langle n | \phi_i \rangle$$

To get a vacuum transition amplitude we can take the infinite T limit,

$$Z = \lim_{T \to \infty e^{-i0_+}} \int_T \left(\prod \mathcal{D}\phi \right) e^{iS_T} \sim \lim_{T \to \infty e^{-i0_+}} \langle 0|e^{-iHT}|0\rangle$$

To recover the vacuum amplitude for **finite** *T*, one would **need to know the wave functional of the vacuum**

$$\langle 0|e^{-iHT}|0\rangle = \int [\mathcal{D}\phi_f]_{T/2} [\mathcal{D}\phi_i]_{-T/2} \langle 0|\phi_f\rangle \langle \phi_f|e^{-iHT}|\phi_i\rangle \langle \phi_i|0\rangle$$
$$= \int [\mathcal{D}\phi_f]_{T/2} [\mathcal{D}\phi_i]_{-T/2} \langle 0|\phi_f\rangle \langle \phi_i|0\rangle \int_{\phi_i,\phi_f,T} \left(\prod \mathcal{D}\phi\right) e^{iS}$$

To ensure projection into vacuum, we use the Euclidean path integral for infinite V T

Finite action constraints and topology

Euclidean path integral receives contributions from fluctuations around **finite action** saddles

- In infinite spacetime, gauge fields at saddles must be pure gauge transf. at ∞
- Fields fall into homotopy classes with integer topological charge Δn

Atiyah-Singer's **index theorem**:

 $\Delta n = \#(\text{Right-handed zero modes of } D) - \#(\text{Left-handed zero modes of } D)$

$$D\psi_R = 0$$

$$D\psi_L = 0$$

The θ -term is related to the topological charge! $-S_{\theta}^{E}=i\theta\Delta n$

The heta-term is only guaranteed to be \propto to an integer in an infinite spacetime

Spurious chiral symmetry

The partition function changes under **chiral field redefinitions** due to **masses** and **anomaly**

Spurion symmetry: Z invariant under chiral transformations plus "spurion" transf:

$$\frac{\psi \to e^{i\beta\gamma_5}\psi}{\bar{\psi} \to \bar{\psi}e^{i\beta\gamma_5}}$$

$$\theta \to \theta + 2N_f\beta, \quad \mathfrak{m}_j = m_j e^{i\alpha_j} \to e^{-2i\beta}\mathfrak{m}_j$$

Effective Lagrangians for QCD should respect spurion symmetry

Carlos Tamarit

Nonperturbative effects in QCD

Integrating anomaly eq:

$$\Delta Q_5 = 2N_f \Delta n + \text{mass corrections}$$

There are interactions that violate chiral charge by $2N_f\Delta n$ units

Captured by effective 't Hooft vertices

$$\mathcal{L}_{\text{eff}} \supset -\sum_{j} m_{j} \bar{\psi}_{j} (e^{-i\alpha_{j}} P_{L} + e^{i\alpha_{j}} P_{R}) \psi_{j} - \Gamma_{N_{f}} e^{i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{L} \psi_{j}) - \Gamma_{N_{f}} e^{-i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{R} \psi_{j})$$

Nonperturbative effects in QCD

$$\mathcal{L}_{\text{eff}} \supset -\sum_{j} m_{j} \bar{\psi}_{j} (e^{-i\alpha_{j}} P_{L} + e^{i\alpha_{j}} P_{R}) \psi_{j} - \Gamma_{N_{f}} e^{i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{L} \psi_{j}) - \Gamma_{N_{f}} e^{-i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{R} \psi_{j})$$

2 options compatible with spurion chiral symmetry:

$$\xi = \theta$$
 CP violation (phases not aligned)

$$\xi = -\sum_{i} \alpha_{i} \equiv -\alpha$$
 No CP violation (all phases aligned, can be removed)

Carlos Tamarit

How to resolve the ambiguity?

Must match effective 't Hooft vertices with QCD computations

Only real computation that we know of is 't Hooft's, using dilute instanton gas and yielding $\xi = \theta$ (CP violation)

We have recomputed Green's functions in the dilute instanton gas, in Euclidean and Minkowski spacetime, and found $\xi = -\alpha$ (no CP violation)

We also have a **computation which does not rely on instantons**, summarized next

Carlos Tamarit 1

Fermion correlators from cluster decomposition and the index theorem

Strategy

We want a derivation that does not rely on instantons

The aim is to constrain the functional dependence of the partition functions $Z_{\Delta n}$ on $VT \equiv \Omega, \ \Delta n, \ \mathfrak{m}_j = m_j e^{\mathrm{i}\alpha_j}$

Fermion masses can be understood as **sources** for the integrated fermion correlators [Leutweyler & Smilga]

$$\mathcal{L} \supset \sum_{j} \left(\bar{\psi}_{j} (\mathfrak{m}_{j}^{*} P_{L} + \mathfrak{m}_{j} P_{R}) \psi_{j} \right)$$

These correlators should be sensitive to global CP-violating phases

$$\frac{\partial}{\partial \mathfrak{m}_i} Z_{\Delta n} = -\int d^4 x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\nu}, \qquad \frac{\partial}{\partial \mathfrak{m}_i^*} Z_{\Delta n} = -\int d^4 x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\nu}.$$

Cluster decomposition

$$Z(\Omega)=\sum_{n=-\infty}^{\infty}\int_{\Delta n}\mathcal{D}\phi e^{-S_{\Omega}[\phi]+i\Delta n\theta}\equiv\sum_{n=-\infty}^{\infty}e^{i\Delta n\theta}\tilde{Z}_{\Delta n}(\Omega)$$
 4D volume

Factorizing path integral a la [Weinberg]

$$\tilde{Z}_{\Delta n}(\Omega = \Omega_1 + \Omega_2) = \int_{\Delta n} \mathcal{D}\phi e^{-S_{\Omega_1 + \Omega_2}[\phi]} = \sum_{\Delta n_1} \int_{\Delta n_1} \mathcal{D}\phi e^{-S_{\Omega_1}[\phi]} \int_{\Delta n - \Delta n_1} \mathcal{D}\phi e^{-S_{\Omega_2}[\phi]}$$
$$\tilde{Z}_{\Delta n}(\Omega = \Omega_1 + \Omega_2) = \sum_{\Delta n_1 = -\infty}^{\infty} \tilde{Z}_{\Delta n_1}(\Omega_1) \tilde{Z}_{\Delta n - \Delta n_1}(\Omega_2)$$

Carlos Tamarit

Taking the clustering argument further

We use index theorem to separate complex phases coming from fermion masses

Ansatz motivated by **parity**

$$g_{\Delta n}(\Omega) = \Omega^{|\Delta n|} f_{|\Delta n|}(\Omega^2), \quad f_{|\Delta n|}(0) \neq 0.$$

Assuming analiticity in Ω there is a unique solution with free parameter β !

$$f_{\Delta n}(\Omega) = I_{\Delta n}(2\beta\Omega)$$

$$Z_{\Delta n} = e^{i\Delta n(\theta + \alpha)} I_{\Delta n}(2\beta\Omega)$$

c.f. [Leutweyler & Smilga]

Mass dependence and correlators

As the $g_{\Delta n}$ are real β can only depend on $\mathfrak{m}_k \mathfrak{m}_k^*$:

$$Z_{\Delta n}(\Omega) = e^{\mathrm{i}\Delta n(\theta - \mathrm{i}/2\sum_{j}\log(\mathfrak{m}_{j}/\mathfrak{m}_{j}^{*}))}I_{\Delta n}(2\beta(\mathfrak{m}_{k}\mathfrak{m}_{k}^{*})\Omega)$$

Taking derivatives with respect to \mathfrak{m} , \mathfrak{m}^* gives averaged integrated correlators

Spurion chiral charge +2

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n} = -e^{i\Delta n(\theta + \bar{\alpha})} \left(-\frac{\beta}{2\mathfrak{m}_i} (I_{\Delta n+1}(2\beta\Omega) - I_{\Delta n-1}(2\beta\Omega)) + \mathfrak{m}_i^* (I_{\Delta n+1}(2\beta\Omega) + I_{\Delta n-1}(2\beta\Omega)) \frac{\partial}{\partial (\mathfrak{m}_i \mathfrak{m}_i^*)} \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \right)$$

Carlos Tamarit

Summing over topological sectors

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^{N} \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^{N} Z_{\Delta m}} = 2\mathfrak{m}_i^* \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*),$$

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^{N} \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^{N} Z_{\Delta m}} = 2\mathfrak{m}_i \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*).$$

Topological classification only enforced in infinite volume, which fixes ordering

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i \psi_i \rangle = 2 m_i e^{-\mathrm{i} \alpha_i \gamma_5} \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \qquad \text{Only a single phase: no CP violation}$$

Summing over topological sectors

Result also valid for more general correlators

Similar results achieved using dilute instanton gas (like `t Hooft, but with a different ordering of limits)

Opposite order of limits yields traditional picture of CP-violation

Conclusions

QCD with an arbitrary θ does not predict CP violation, as long as the sum over topological sectors is performed at infinite volume

This **ordering of limits** is the correct one because the topological classification is only enforced for an infinite volume

Further reading in our paper

- For local observables one can recover CP-conserving expectation values from path integrals in a finite subvolume without θ dependence
- No conflict with nonzero topological susceptibility in the lattice and η ' mass

Carlos Tamarit 2

Thank you!

Additional material

Phase ambiguity in the chiral Lagrangian

The **chiral Lagrangian** at lowest order has the form

$$\mathcal{L} = f_{\pi}^{2} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \operatorname{Tr} M U + b f_{\pi}^{4} \operatorname{det} U + \text{h.c.}$$

Captures t' Hooft vertices $U \sim \bar{\psi} P_R \psi \sim e^{\mathrm{i} \frac{\Pi^a \sigma^a}{\sqrt{2} f_\pi}}$

$$U \sim \bar{\psi} P_R \psi \sim e^{i\frac{\Pi^a \sigma^a}{\sqrt{2}f_\pi}}$$

There are again 2 options compatible with spurion chiral symmetry

$$b \propto e^{-i\theta}$$

$$b \propto e^{i\alpha} = e^{i\sum_j \arg(\mathfrak{m}_j)}$$

Usual option, assumed by [Baluni, Crewther et al] — CP violation

No CP violation!

No CP violation in the chiral Lagrangian

$$\mathcal{L} = f_{\pi}^{2} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \operatorname{Tr} M U + |b| e^{i\xi} f_{\pi}^{4} \det U + \text{h.c.}$$

Minimizing the potential for the pions leads to

$$\langle U \rangle = U_0 = \operatorname{diag} \left(e^{i\varphi_u}, e^{i\varphi_d}, e^{i\varphi_s} \right).$$

$$m_i \varphi_i = \frac{m_u m_d m_s (\xi + \alpha_u + \alpha_d + \alpha_s)}{m_u m_d + m_d m_s + m_s m_u} = \tilde{m} (\xi + \alpha_u + \alpha_d + \alpha_s).$$

Adding field N containing neutron and proton, the CP-violating neutron-pion interactions are of the form

$$\frac{c_{+}\tilde{m}(\xi + \alpha_{u} + \alpha_{d} + \alpha_{s})}{2f_{\pi}}\bar{N}\Phi N$$

(ϕ containing U, U^{\dagger} and gammas) which cancel for $\xi = -\alpha$ — no CP violation

Baluni's CP-violating effective Lagrangian

Baluni's CP-violating Lagrangian (used by [Crewther et al]) is based on searching for field redefinitions that minimize the QCD mass term

$$\mathcal{L}_{M}(U_{R,L}) = \bar{\psi}U_{R}^{\dagger}MU_{L}\psi_{L} + \text{h.c.}, \quad U_{R,L} \in SU_{R,L}(3)$$
$$\langle 0|\delta\mathcal{L}|0\rangle = \min_{U_{R,L}}\langle 0|\mathcal{L}_{M}(U_{R,L})|0\rangle$$

However, there is an extra assumption: that the phase of the fermion condensate is aligned with θ

$$\langle \bar{\psi}_R \psi_L \rangle = \Delta e^{\mathrm{i}c\theta} \mathbb{I}$$

This assumption does not hold for the chiral Lagrangian with $\xi=-\alpha$ as seen in previous slide

The η ' mass

Chiral Lagrangian with alignment in the phases of mass terms and anomalous terms still predicts a **nonzero value of the** η **' mass**

$$\mathcal{L} = f_{\pi}^{2} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \operatorname{Tr} M U + |b| e^{\operatorname{iarg det} M} f_{\pi}^{4} \operatorname{det} U + \text{h.c.}$$

$$m_{\eta'}^{2} = 8|b| f_{\pi}^{2}$$

Can be seen to be **proportional** to the **topological susceptibility** over **finite volumes** of the **pure gauge theory**, in line with [Witten, Di Vecchia & Veneziano]

Classic arguments linking topological susceptibility to CP violation ([Shifman et al]) rely on analytic expansions in θ which don't apply with our limiting procedure

Z becomes non-analytic in θ . This possibility has been mentioned by [Witten]

the physics is of order e^{-N} , contrary to the basic assumptions of this paper, or else the physics is non-analytic as a function of θ , In the latter case, which is quite plausible, the singularities would probably be at $\theta = \pm \pi$, as Coleman found for the massive Schwinger model [10]. It is also quite plausible that θ is not really an angular variable.)

To write a formal expression for $d^2E/d\theta^2$, let us think of the path integral formulation of the theory:

$$Z = \int dA_{\mu} \exp i \int Tr \left[-\frac{1}{4} F_{\mu\nu} + \frac{g^2 \theta}{16\pi^2 N} F_{\mu\nu} \tilde{F}_{\mu\nu} \right].$$
 (5)

Partition function and analiticity

Usual partition function is analytic in θ

$$Z_{\text{usual}} = \lim_{VT \to \infty} \lim_{\substack{N \to \infty \\ N \in N}} \sum_{\Delta n = -N}^{N} Z_{\Delta n} = e^{2i\kappa_{N_f}VT\cos(\bar{\alpha} + \theta + N_f\pi)}$$

 θ -dependence of observables (giving CP violation) usually relies on θ expansion. e.g.

$$\frac{\langle \Delta n \rangle}{\Omega} = i (\theta - \theta_0) \left. \frac{\langle \Delta n^2 \rangle}{\Omega} \right|_{\theta_0} + \mathcal{O}(\theta - \theta_0)^2$$

topological susceptibility

[Shifman et al]

In our limiting procedure the former is not valid, as Z becomes nonanalytic in θ

$$Z = \lim_{\substack{N \to \infty \\ N \in N}} \lim_{VT \to \infty} \sum_{\Delta n = -N} Z_{\Delta n} = I_0(2i\kappa_{N_f}VT) \lim_{\substack{N \to \infty \\ N \in N}} \sum_{|\Delta n| \le N} e^{i\Delta n(\bar{\alpha} + \theta + N_f\pi)}$$

 θ drops out from observables, there is no CP violation

Finite volumes in an infinite spacetime

Even in an infinite spacetime, we can express expectation values of local observables in terms over **path integration over finite volume**.

This can help make contact with lattice computations

Assume local operator \mathcal{O}_1 with support in finite spacetime volume Ω_1

$$\langle \mathcal{O}_{1} \rangle_{\Omega} = \frac{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \, \mathcal{O}_{1} \, e^{-S_{\Omega}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \, e^{-S_{\Omega}[\phi]}}$$

$$= \frac{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_{1} = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_{1}} \mathcal{D}\phi \, \mathcal{O}_{1} \, e^{-S_{\Omega_{1}}[\phi]} \int_{\Delta n_{2} = \Delta n - \Delta n_{1}} \mathcal{D}\phi \, e^{-S_{\Omega_{2}}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_{1} = -\infty}^{\infty} \int_{\Delta n_{1} = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_{1}} \mathcal{D}\phi \, e^{-S_{\Omega_{1}}[\phi]} \int_{\Delta n_{2} = \Delta n - \Delta n_{1}} \mathcal{D}\phi \, e^{-S_{\Omega_{2}}[\phi]}}.$$

Finite volumes in an infinite spacetime

Path integrations over Ω_2 give just the **partition functions** we calculated before

In the infinite volume limit the Bessel functions tend to common value and dependence on Δn factorizes out and cancels:

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} \mathcal{O}_1 e^{-S_{\Omega_1}[\phi]}}{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} e^{-S_{\Omega_1}[\phi]}}.$$

We recover a path integration over a finite volume, without θ dependence

Extra phases precisely cancel those from fermion determinants in Ω_1

This removes interferences between different topological sectors

The QCD angle from the vacuum state

Hamiltonian is zero for pure gauge transformations, with integer $n_{\rm CS}$: Expect degenerate classical pre-vacua $|n_{\rm CS}\rangle\equiv|n\rangle$

If the **true vacuum** $|\omega\rangle$ were to be a linear combination of the classical prevacua

$$|\omega\rangle = \sum_{n} f(n)|n\rangle$$

Demanding invariance up to a phase under gauge transformations in the Δn class

$$U_{\Delta n}|\omega\rangle = \sum_{n} f(n)|n + \Delta n\rangle = e^{i\Delta n\theta}|\omega\rangle \Rightarrow f(n) = e^{-in\theta}$$

$$Z(\theta) = \langle \omega|e^{-HT}|\omega\rangle = \sum_{m} \sum_{n} \langle m|e^{-HT}e^{i\theta(m-n)}|n\rangle = \mathcal{N}\sum_{\Delta n} \langle n + \Delta n|e^{-HT}e^{i\theta\Delta n}|n\rangle$$

$$= \mathcal{N}\sum_{\Delta n} \int_{\Delta n} \mathcal{D}\phi \, e^{-S_{\theta} + \dots}$$

Can one use the " θ vacuum" at finite volume?

Bloch wave function in QM:

vs θ vacuum having support only on classical vacua

Too naive! Have to use path integral in infinite 4D volume to project into vacuum