

Modular symmetries and the flavor problem

Davide Meloni
Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

Left-handed

Right-handed

Scalar sector

The Flavor Problem

Mass hierarchies

$m_{d} \ll m_{s} \ll m_{b}, \frac{m_{d}}{m_{s}}=5.02 \times 10^{-2}$,
$m_{u} \ll m_{c} \ll m_{t}, \frac{m_{u}}{m_{c}}=1.7 \times 10^{-3}$,
$\frac{m_{s}}{m_{b}}=2.22 \times 10^{-2}, m_{b}=4.18 \mathrm{GeV} ;$
$\frac{m_{c}}{m_{t}}=7.3 \times 10^{-3}, m_{t}=172.9 \mathrm{GeV} ;$

The Flavor Problem

Mass hierarchies

$m_{d} \ll m_{s} \ll m_{b}, \frac{m_{d}}{m_{s}}=5.02 \times 10^{-2}$,
$m_{u} \ll m_{c} \ll m_{t}, \frac{m_{u}}{m_{c}}=1.7 \times 10^{-3}$,
$\frac{m_{s}}{m_{b}}=2.22 \times 10^{-2}, m_{b}=4.18 \mathrm{GeV} ;$
$\frac{m_{c}}{m_{t}}=7.3 \times 10^{-3}, m_{t}=172.9 \mathrm{GeV} ;$

Fermion mixing

Leptonic PMNS mixing matrix

all mixing are large but the 13 element

almost a diagonal matrix

Suggested solutions

* Smallness of
neutrino masses:

See-saw

$\mathcal{M}=\left[\begin{array}{ll}\boldsymbol{m}_{M}^{L} & \boldsymbol{m}_{D} \\ \boldsymbol{m}_{D} & \boldsymbol{m}_{M}^{R}\end{array}\right]$

$$
m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{M}^{R}}
$$

Suggested solutions

* Smallness of neutrino masses:

See-saw

$$
\mathcal{M}=\left[\begin{array}{ll}
\boldsymbol{m}_{M}^{L} & \boldsymbol{m}_{D} \\
\boldsymbol{m}_{D} & \boldsymbol{m}_{M}^{R}
\end{array}\right]
$$

$$
m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{M}^{R}}
$$

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_{L}} H \Psi_{R}\left(\frac{\theta}{\Lambda}\right)^{n} \rightarrow e^{\left(-q_{L}+q_{H}+q_{R}+n * q_{\theta}\right)}
$$

Suggested solutions

* Smallness of neutrino masses:

See-saw

$\mathcal{M}=\left[\begin{array}{ll}\boldsymbol{m}_{M}^{L} & \boldsymbol{m}_{D} \\ \boldsymbol{m}_{D} & \boldsymbol{m}_{M}^{R}\end{array}\right]$

$$
m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{M}^{R}}
$$

No clue on mixing!

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_{L}} H \Psi_{R}\left(\frac{\theta}{\Lambda}\right)^{n}
$$

Too many O(1) coefficients

Works better for small mixing

Suggested solutions

* Smallness of neutrino masses:

See-saw

$$
\mathcal{M}=\left[\begin{array}{ll}
\boldsymbol{m}_{M}^{L} & \boldsymbol{m}_{D} \\
\boldsymbol{m}_{D} & \boldsymbol{m}_{M}^{R}
\end{array}\right]
$$

* Hierarchical Pattern

Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_{L}} H \Psi_{R}\left(\frac{\theta}{\Lambda}\right)^{n}
$$

Too many O(1) coefficients

Works better for small mixing

* mixing angles
elegant explanation:
non-Abelian
discrete flavour symmetries

Complicated scalar sector

$$
m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{M}^{R}}
$$

No clue on mixing!

Modular Symmetry

We start from

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\operatorname{Mod} N)\right\}
$$

the group of 2×2 matrices with integer entries modulo N and determinant equals to one modulo N

Modular Symmetry

We start from

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\operatorname{Mod} N)\right\}
$$

the group of 2×2 matrices with integer entries modulo N and determinant equals to one modulo N
$\Gamma(\mathbf{1})=\mathbf{S L}(\mathbf{2}, \mathbf{Z})=$ special linear group $=$ the group of 2×2 matrices with integer entries and determinant equals to one, called homogeneous modular group Γ

Modular Symmetry

We start from

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\operatorname{Mod} N)\right\}
$$

the group of 2×2 matrices with integer entries modulo N and determinant equals to one modulo N
$\Gamma(\mathbf{1})=\mathbf{S L}(\mathbf{2}, \mathbf{Z})=$ special linear group $=$ the group of 2×2 matrices with integer entries and determinant equals to one, called homogeneous modular group Γ
$\Gamma(\mathbf{N}), \mathbf{N}>=\mathbf{2}$ are infinite normal subgroups of Γ

Modular Symmetry

We start from

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\operatorname{Mod} N)\right\}
$$

the group of 2×2 matrices with integer entries modulo N and determinant equals to one modulo N
$\Gamma(\mathbf{1})=\mathbf{S L}(\mathbf{2}, \mathbf{Z})=$ special linear group $=$ the group of 2×2 matrices with integer entries and determinant equals to one, called homogeneous modular group Γ
$\Gamma(\mathbf{N}), \mathbf{N}>=\mathbf{2}$ are infinite normal subgroups of Γ
the group $\Gamma(N)$ acts on the complex variable $\tau(\operatorname{lm} \tau>0)$

$$
\gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

Modular Symmetry

Important observation for $\mathrm{N}=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a,-b,-c,-d\}$
$\Gamma(\mathbf{1})$ is isomorphic to $\operatorname{PSL}(\mathbf{2}, \mathbf{Z})=\mathbf{S L}(\mathbf{2}, \mathbf{Z}) /\{ \pm \mathbf{1}\}=\Gamma$
inhomogeneous modular group (or simply Modular Group)

Modular Symmetry

Important observation for $\mathrm{N}=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a,-b,-c,-d\}$
$\Gamma(\mathbf{1})$ is isomorphic to $\operatorname{PSL}(\mathbf{2}, \mathbf{Z})=\mathbf{S L (2 , Z}) /\{ \pm \mathbf{1}\}=\Gamma$
inhomogeneous modular group (or simply Modular Group)

In addition:

since 1 and -1 cannot be distinguished

$$
\bar{\Gamma}(N)=\Gamma(N) \quad N>2
$$

$$
\downarrow
$$

since 1 and -1 can be distinguished

Modular Symmetry

Important observation for $\mathrm{N}=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a,-b,-c,-d\}$
$\Gamma(\mathbf{1})$ is isomorphic to $\operatorname{PSL}(\mathbf{2}, \mathbf{Z})=\mathbf{S L (2 , Z}) /\{ \pm \mathbf{1}\}=\Gamma$
inhomogeneous modular group (or simply Modular Group)
In addition:

since 1 and -1 cannot be distinguished

$$
\bar{\Gamma}(N)=\Gamma(N) \quad N>2
$$

$$
\downarrow
$$

since 1 and -1 can be distinguished

Finite Modular Group:

$$
\Gamma_{N}=\frac{\bar{\Gamma}}{\bar{\Gamma}(N)}
$$

Modular Symmetry

Generators of Γ_{N} : elements S and T satisfying

$$
\begin{aligned}
& S^{2}=1, \quad(S T)^{3}=1, \quad T^{N}=1 \\
& S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

corresponding to:

$$
\stackrel{S}{\rightarrow}-\frac{1}{\tau} \quad \tau \xrightarrow{T} \tau+1
$$

Modular Symmetry

Generators of Γ_{N} : elements S and T satisfying

$$
\begin{aligned}
& S^{2}=1, \quad(S T)^{3}=1, \quad T^{N}=1 \\
& S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

corresponding to:

$$
\stackrel{S}{\rightarrow}-\frac{1}{\tau} \quad \tau \xrightarrow{T} \tau+1
$$

relevant for model building:
for $\mathrm{N} \leq 5$, the finite modular groups Γ_{N} are isomorphic to non-Abelian discrete groups

$$
\Gamma_{2} \simeq \mathrm{~S}_{3} \quad \Gamma_{3} \simeq \mathrm{~A}_{4} \quad \Gamma_{4} \simeq \mathrm{~S}_{4} \quad \Gamma_{5} \simeq \mathrm{~A}_{5}
$$

Then the question is: why Modular Symmetry?

Modular Forms

Modular Forms:
holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(\mathbf{N})$

$$
f(\gamma \tau)=(c \tau+d)^{2 k} f(\tau), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(N) \quad 2 \mathrm{k}=\text { weigth, } \mathrm{N}=\text { level }
$$

Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(\mathbf{N})$

$$
f(\gamma \tau)=(c \tau+d)^{2 k} f(\tau), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(N) \quad 2 \mathrm{k}=\text { weigth, } \mathrm{N}=\text { level }
$$

$$
K<0:
$$

no modular forms linear space of finite dimension

\longrightarrow| N | $d_{2 k}(\Gamma(N))$ |
| :---: | :---: |
| 2 | $k+1$ |
| 3 | $2 k+1$ |
| 4 | $4 k+1$ |
| 5 | $10 k+1$ |
| 6 | $12 k$ |
| 7 | $28 k-2$ |

Model Building

Key points:

1. Modular forms of weight $2 k$ and level $N \geq 2$ are invariant, up to the factor $(\mathrm{ct}+\mathrm{d})^{2 \mathrm{k}}$ under $\Gamma(\mathbf{N})$ but they transform under Γ_{N} !

$$
f_{i}(\gamma \tau)=(c \tau+d)^{2 k} \rho(\gamma)_{i j} f_{j}(\tau)
$$

representative element of Γ_{N}

Model Building

Key points:

1. Modular forms of weight $2 k$ and level $N \geq 2$ are invariant, up to the factor $(\mathrm{ct}+\mathrm{d})^{2 k}$ under $\Gamma(\mathbf{N})$ but they transform under Γ_{N} !

$$
f_{i}(\gamma \tau)=(c \tau+d)^{2 k} \rho(\gamma)_{i j} f_{j}(\tau)
$$

unitary representation of Γ_{N} representative element of Γ_{N}
2. in addition, one assumes that the fields of the theory χ_{i} transforms nontrivially under Γ_{N}

$$
\chi(x)_{i} \rightarrow(c \tau+d)^{-k_{i}} \rho(\gamma)_{i j} \chi(x)_{j}
$$

not modular forms ! No restrictions on ki

Model Building

Building blocks:

1. Modular forms and fields: $L_{e f f} \in f(\tau) \times \phi^{(1)} \ldots \phi^{(n)}$

Model Building

Building blocks:

1. Modular forms and fields: $L_{e f f} \in f(\tau) \times \phi^{(1)} \ldots \phi^{(n)}$
2. Invariance under modular transformation requires:

$$
\begin{gathered}
2 k=\Sigma_{i} k_{i} \\
\rho_{f} \otimes \rho_{\chi_{1}} \otimes \ldots \otimes \rho_{\chi_{n}} \supset I
\end{gathered}
$$

To start playing the game:

Can someone give me the Modular Forms?

Model Building

Long list from S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022

For $\left(\Gamma_{3} \simeq A_{4}\right)$, the generating (basis) modular forms of weight 2 were shown to form a 3 of A_{4} (expressed in terms of log derivatives of Dedekind η-function η^{\prime} / η of 4 different arguments).
F. Feruglio, arXiv:1706.08749

For $\left(\Gamma_{2} \simeq S_{3}\right)$, the two basis modular forms of weight 2 were shown to form a 2 of S_{3} (expressed in terms of η^{\prime} / η of 3 different arguments).
T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For $\left(\Gamma_{4} \simeq S_{4}\right)$, the 5 basis modular forms of weight 2 were shown to form a 2 and a 3^{\prime} of S_{4} (expressed in terms of η^{\prime} / η of 6 different arguments).
J. Penedo, STP, arXiv:1806.11040

For ($\Gamma_{5} \simeq A_{5}$), the 11 basis modular forms of weight 2 were shown to form a 3, a 3^{\prime} and a 5 of A_{5} (expressed in terms of Jacobi theta function $\theta_{3}(z(\tau), t(\tau))$ for 12 different sets of $z(\tau), t(\tau))$.

```
P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588
```

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:
i) for $N=4$ (i.e., S_{4}), multiplets of weight 4 (weight $k \leq 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);
ii) for $N=3$ (i.e., A_{4}) multiplets of weight $k \leq 6$ were found in arXiv:1706.08749;
iii) for $N=5$ (i.e., A_{5}), multiplets of weight $k \leq 10$ were derived in arXiv:1812.02158.

Model Building

Constructing the Modular Forms

Crucial observation:
if $\quad g(\tau) \rightarrow e^{i \alpha}(c \tau+d)^{k} g(\tau)$
then $\quad \frac{d}{d \tau} \log [g(\tau)] \rightarrow(c \tau+d)^{2} \frac{d}{d \tau} \log [g(\tau)]+k c(c \tau+d)$
this term prevents of having a modular form of weight $\mathbf{2 k}=\mathbf{2}$

Model Building

Constructing the Modular Forms

Crucial observation:
if

$$
g(\tau) \rightarrow e^{i \alpha}(c \tau+d)^{k} g(\tau)
$$

then $\quad \frac{d}{d \tau} \log [g(\tau)] \rightarrow(c \tau+d)^{2} \frac{d}{d \tau} \log [g(\tau)]+k c(c \tau+d)$
this term prevents of having a modular form of weight $\mathbf{2 k}=\mathbf{2}$
The inhomogeneous term can be removed if we combine several $f_{i}(\tau)$ with weights k_{i}

$$
\frac{d}{d \tau} \Sigma_{i} \log \left[g_{i}(\tau)\right] \quad \rightarrow \quad(c \tau+d)^{2} \frac{d}{d \tau} \Sigma_{i} \log \left[g_{i}(\tau)\right]+\left(\Sigma_{i} k_{i}\right) c(c \tau+d)
$$

$$
\text { with } \quad \sum_{i} k_{i}=0
$$

A case study: $\Gamma_{2} \sim S_{3}$

Let us find the functions $\mathbf{f}(\tau)$!

The group S_{3} contains $1+1^{\prime}+2$

two independent modular forms can fit into a doublet of S_{3}

A case study: $\Gamma_{2} \sim S_{3}$

Let us find the functions $\mathbf{f}(\tau)$!

The group S_{3} contains $1+1^{\prime}+2$

N	$d_{2 k}(\Gamma(N))$
2	$k+1$

\Longleftarrow two independent modular forms can fit into a doublet of S_{3}

$$
\underline{\text { Dedekind eta functions }} \quad \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \quad q \equiv e^{i 2 \pi \tau}
$$

$$
\mathrm{S}: \eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau) \quad, \quad \mathrm{T}: \eta(\tau+1)=e^{i \pi / 12} \eta(\tau)
$$

η^{24} is a modular form of weight 12

A case study: $\Gamma_{2} \sim S_{3}$

Constructing the Modular Forms

the system is closed under modular transformation

A case study: $\Gamma_{2} \sim S_{3}$

Constructing the Modular Forms

$$
\eta(2 \tau)
$$

$$
\eta(\tau / 2)
$$

the system is closed under modular transformation
candidate modular form

$$
\begin{array}{r}
Y(\alpha, \beta, \gamma)=\frac{d}{d \tau}[\alpha \log \eta(\tau / 2)+\beta \log \eta((\tau+1) / 2)+\gamma \log \eta(2 \tau)] \\
\alpha+\beta+\gamma=0
\end{array}
$$

A case study: $\Gamma_{2} \sim S_{3}$

Constructing the Modular Forms

Equations to be satisfied:

$$
\binom{Y_{1}(-1 / \tau)}{Y_{2}(-1 / \tau)}=\tau^{2} \rho(S)\binom{Y_{1}(\tau)}{Y_{2}(\tau)}, \quad\binom{Y_{1}(\tau+1)}{Y_{2}(\tau+1)}=\rho(T)\binom{Y_{1}(\tau)}{Y_{2}(\tau)}
$$

representation of generators

$$
\begin{aligned}
& \rho(S)=\frac{1}{2}\left(\begin{array}{cc}
-1 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right), \quad \rho(T)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& (\rho(S))^{2}=\mathbb{I}, \quad(\rho(S) \rho(T))^{3}=\mathbb{I}, \quad(\rho(T))^{2}=\mathbb{I}
\end{aligned}
$$

A case study: $\Gamma_{2} \sim S_{3}$

Constructing the Modular Forms

Equations to be satisfied:

$$
\binom{Y_{1}(-1 / \tau)}{Y_{2}(-1 / \tau)}=\tau^{2} \rho(S)\binom{Y_{1}(\tau)}{Y_{2}(\tau)}, \quad\binom{Y_{1}(\tau+1)}{Y_{2}(\tau+1)}=\rho(T)\binom{Y_{1}(\tau)}{Y_{2}(\tau)}
$$

representation of generators

$$
\begin{aligned}
& \rho(S)=\frac{1}{2}\left(\begin{array}{cc}
-1 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right), \quad \rho(T)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& (\rho(S))^{2}=\mathbb{I}, \quad(\rho(S) \rho(T))^{3}=\mathbb{I}, \quad(\rho(T))^{2}=\mathbb{I}
\end{aligned}
$$

$$
Y_{1}(\alpha, \beta, \gamma) \sim Y(1,1,-2) \quad Y_{2}(\alpha, \beta, \gamma) \sim Y(1,-1,0)
$$

$$
\begin{aligned}
& Y_{1}(\tau)=\frac{i}{4 \pi}\left(\frac{\eta^{\prime}(\tau / 2)}{\eta(\tau / 2)}+\frac{\eta^{\prime}((\tau+1) / 2)}{\eta((\tau+1) / 2)}-\frac{8 \eta^{\prime}(2 \tau)}{\eta(2 \tau)}\right) \\
& Y_{2}(\tau)=\frac{\sqrt{3} i}{4 \pi}\left(\frac{\eta^{\prime}(\tau / 2)}{\eta(\tau / 2)}-\frac{\eta^{\prime}((\tau+1) / 2)}{\eta((\tau+1) / 2)}\right)
\end{aligned}
$$

A case study: $\Gamma_{2} \sim S_{3}$

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)
For a satisfactory model, we ask:

1. small number of operators \rightarrow predictability
2. no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ

A case study: $\Gamma_{2} \sim S_{3}$

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)
For a satisfactory model, we ask:

1. small number of operators \rightarrow predictability
2. no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ

	S_{3}	$\mathrm{SU}(2)$	k_{i}
$\mathrm{L}_{\mathrm{e} \mu}=(\mathrm{e}, \mu)$	2	2	-1
$\mathrm{~L}_{\tau}$	1	2	-1
H_{u}	1	2	0

A case study: $\Gamma_{2} \sim S_{3}$

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)
For a satisfactory model, we ask:

1. small number of operators \rightarrow predictability
2. no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ
using one power of Y (modular form of lowest weight)

	S_{3}	$\mathrm{SU}(2)$	k_{i}
$\mathrm{L}_{\mathrm{e} \mu}=(\mathrm{e}, \mu)$	2	2	-1
$\mathrm{~L}_{\tau}$	1	2	-1
H_{u}	1	2	0

$$
L=h_{u}^{2}\left[a\left(\left(L_{e \mu} L_{e \mu}\right)_{2}, Y\right)_{1}+b L_{\tau}\left(L_{e \mu} Y\right)_{1}\right]
$$

$$
m_{v}=\left(\begin{array}{ccc}
a Y_{2} & a Y_{1} & b Y_{1} / 2 \\
a Y_{1} & -a Y_{2} & b Y_{2} / 2 \\
b Y_{1} / 2 & b Y_{2} / 2 & 0
\end{array}\right)
$$

A case study: $\Gamma_{2} \sim S_{3}$

How to predict the Neutrino mass matrix (from the Weinberg operator, wrong path...)

Mass matrix against the experimental data

$$
m_{v}=\left(\begin{array}{ccc}
a Y_{2} & a Y_{1} & b Y_{1} / 2 \\
a Y_{1} & -a Y_{2} & b Y_{2} / 2 \\
b Y_{1} / 2 & b Y_{2} / 2 & 0
\end{array}\right)
$$

$\sin ^{2} \theta_{12} / 10^{-1}$	$2.97_{-0.16}^{+0.17}$
$\sin ^{2} \theta_{13} / 10^{-2}$	$2.15_{-0.07}^{+0.07}$
$\sin ^{2} \theta_{23} / 10^{-1}$	$4.25_{-0.15}^{+0.21}$
$\delta_{C P} / \pi$	$1.38_{-0.20}^{+0.23}$
r	$2.92_{-0.11}^{+0.10} \times 10^{-2}$

5 observables, 2 complex parameters: a / b and $\tau \rightarrow$ very difficult task!

$$
\text { large } \chi^{2} \text { of } O(100) \text { mainly driven by } \theta_{13}
$$

Conclusions

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated by modular forms
unified description of quarks and leptons
symmetry breaking by the vev of tau only

A lot to do:
mass hierarchy
more pheno: leptogenesis, LFV...

Backup slides

Kahler potential

Under $\Gamma: \quad\left\{\begin{array}{l}\tau \rightarrow \frac{a \tau+b}{c \tau+d} \\ \varphi^{(I)} \rightarrow(c \tau+d)^{-k_{I}} \rho^{(I)}(\gamma) \varphi^{(I)}\end{array}\right.$

Tte invariance of the action requires the invariance of the superpotential $w(\Phi)$ and the invariance of the Kahler potential up to a Kahler transformation:

Kahler potential:

$$
\sum_{I}(-i \tau+i \bar{\tau})^{-k_{I}}\left|\varphi^{(I)}\right|^{2}
$$

modular invariant kinetic terms

$$
\frac{h}{\langle-i \tau+i \bar{\tau}\rangle^{2}} \partial_{\mu} \bar{\tau} \partial^{\mu} \tau+\sum_{I} \frac{\partial_{\mu} \bar{\varphi}^{(I)} \partial^{\mu} \varphi^{(I)}}{\langle-i \tau+i \bar{\tau}\rangle^{k_{I}}}
$$

Some definitions

a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup which is invariant under conjugation by members of the group of which it is a part: a subgroup N of the group G is normal in G if and only if $\left(\mathrm{g} \mathrm{n} \mathrm{g}^{-1}\right) \in N$ for all $g \in G$ and $n \in N$
$\Gamma(\mathbf{N}), \mathbf{N}>=\mathbf{2}$ are infinite normal subgroups of Γ, called principal congruence subgroups
the group $\Gamma(N)$ acts on the complex variable $\tau(\operatorname{lm} \tau>0)$

$$
\gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

And it can be shown that the upper half-plane is mapped to itself under this action. The complex variable is henceforth restricted to have positive imaginary part

Some definitions

Modular Functions and Modular Forms
J. S. Milne

Definition 0.2. A holomorphic function $f(z)$ on \mathbb{H} is a modular form of level N and weight 2 k if
(a) $f(\alpha z)=(c z+d)^{2 k} \cdot f(z)$, all $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(N)$;
(b) $f(z)$ is "holomorphic at the cusps".

Fundamental domain of τ on $\operatorname{SL}(2, Z)$: connected open subset such that no two points of D are equivalent under $\operatorname{SL}(2, Z)$

Theorem 2.12. Let $D=\{z \in \mathbb{H}| | z|>1,|\Re(z)|<1 / 2\}$.
(a) D is a fundamental domain for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$; moreover, two elements z and z^{\prime} of \bar{D} are equivalent under $\Gamma(1)$ if and only if
(i) $\Re(z)= \pm 1 / 2$ and $z^{\prime}=z \pm 1$, (then $z^{\prime}=T z$ or $z=T z^{\prime}$), or
(ii) $|z|=1$ and $z^{\prime}=-1 / z=S z$.

A case study: $\Gamma_{2} \sim S_{3}$

Constructing the Modular Forms

Under T:

$$
Y(\alpha, \beta, \gamma) \rightarrow Y(\gamma, \beta, \alpha)
$$

Under S:

$$
Y(\alpha, \beta, \gamma) \rightarrow \tau^{2} Y(\gamma, \alpha, \beta)
$$

representation of generators

$$
\begin{gathered}
\rho(S)=\frac{1}{2}\left(\begin{array}{cc}
-1 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right), \quad \rho(T)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
(\rho(S))^{2}=\mathbb{I}, \quad(\rho(S) \rho(T))^{3}=\mathbb{I}, \quad(\rho(T))^{2}=\mathbb{I}
\end{gathered}
$$

A case study: $\Gamma_{2} \sim S_{3}$

q-expansion of the Modular Forms

$$
\begin{aligned}
& Y_{1}(\tau)=\frac{1}{8}+3 q+3 q^{2}+12 q^{3}+3 q^{4} \cdots \\
& Y_{2}(\tau)=\sqrt{3} q^{1 / 2}\left(1+4 q+6 q^{2}+8 q^{3} \cdots\right) \\
& Y_{1}(\tau) \gg Y_{2}(\tau) \quad \text { for } \operatorname{lm}(\tau) \gg 1
\end{aligned}
$$

Weinberg operators for $\Gamma_{2} \sim S_{3}$

Neutrino mass matrices from the Weinberg operator

	S_{3}	$\mathrm{SU}(2)$	k_{i}
$\mathrm{L}_{\mathrm{e} \mu}=(\mathrm{e}, \mu)$	2	2	$\mathrm{k}_{\mathrm{e} \mu}$
L_{τ}	1	2	k_{τ}
H_{u}	1	2	0

Case a) $\quad\left(L_{e \mu}^{2}\right)_{1} \otimes\left(Y^{2}\right)_{1},\left(Y^{3}\right)_{1}, \ldots,\left(Y^{n}\right)_{1}$
$-2 k_{e \mu}+2 n=0, \quad n=2 \ldots$

Case b) $\quad\left(L_{e \mu}^{2}\right)_{2} \otimes Y,\left(Y^{2}\right)_{2},\left(Y^{3}\right)_{2}, \ldots,\left(Y^{n}\right)_{2}$
$-2 k_{e \mu}+2 n=0, \quad n=1 \ldots$

Case c) $\left(L_{e \mu} L_{\tau}\right)_{2} \otimes Y,\left(Y^{2}\right)_{2},\left(Y^{3}\right)_{2}, \ldots,\left(Y^{n}\right)_{2}$
$-k_{e \mu}-k_{e \tau}+2 n=0, \quad n=1 \ldots$

Case d) $\quad\left(L_{\tau}\right)^{2} \otimes\left(Y^{2}\right)_{1},\left(Y^{3}\right)_{1}, \ldots,\left(Y^{n}\right)_{1}$ $-2 k_{e \tau}+2 n=0, \quad n=2 \ldots$

Weinberg operators for $\Gamma_{2} \sim S_{3}$

Neutrino mass matrices from the Weinberg operator

$$
(n=1)
$$

Case b) $\quad\left(L_{e \mu}^{2}\right)_{2} \otimes Y,\left(Y^{2}\right)_{2},\left(Y^{3}\right)_{2}, \ldots,\left(Y^{n}\right)_{2}$

$$
-2 k_{e \mu}+2 n=0, \quad n=1 \ldots
$$

Case c) $\left(L_{e \mu} L_{\tau}\right)_{2} \otimes Y,\left(Y^{2}\right)_{2},\left(Y^{3}\right)_{2}, \ldots,\left(Y^{n}\right)_{2} \quad \longrightarrow \quad-k_{e \mu}-k_{e \tau}+2 n=0, \quad n=1 \ldots$

Solutions:

$$
\left[k_{e \mu}=1 \quad k_{e \tau}=0\right] \quad\left[\begin{array}{lll}
k_{e \mu} & =0 & \left.k_{e \tau}=2\right] \quad\left[k_{e \mu}=1\right.
\end{array} k_{e \tau}=1\right]
$$

$$
m_{v}=\left(\begin{array}{ccc}
b Y_{2} & b Y_{1} & c Y_{1} / 2 \\
b Y_{1} & -b Y_{2} & c Y_{2} / 2 \\
c Y_{1} / 2 & c Y_{2} / 2 & 0
\end{array}\right)
$$

Weinberg operators for $\Gamma_{2} \sim S_{3}$

Neutrino mass matrices from the Weinberg operator

$$
(n=2)
$$

Case a) \quad Case c) $\quad-2 k_{e \mu}+4=0 \quad-k_{e \mu}-k_{e \tau}+4=0$

Case b)

$$
-2 k_{e \mu}+4=0
$$

$$
\text { Case d) } \quad-2 k_{e \tau}+4=0
$$

Solutions:

$$
\left[\begin{array}{ll}
k_{e \mu} & =2
\end{array} k_{e \tau}=2\right] \quad\left[\begin{array}{ll}
k_{e \mu} & =2
\end{array} k_{e \tau} \neq 2\right] \quad\left[\begin{array}{ll}
k_{e \mu} \neq 2 & k_{e \tau}
\end{array}=2\right]
$$

$$
m_{v}=\left(\begin{array}{lcc}
(a+b) y_{1}^{2}+(a-b) y_{2}^{2} & 2 b y_{1} y_{2} & c y_{1} y_{2} \\
* & (a-b) y_{1}^{2}+(a+b) y_{2}^{2} & 1 / 2 c\left(y_{1}^{2}-y_{2}^{2}\right) \\
* & * & d\left(y_{1}^{2}+y_{2}^{2}\right)
\end{array}\right)
$$

A case study: $\Gamma_{2} \sim S_{3}$

Dedekind eta functions $\quad \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \quad q \equiv e^{i 2 \pi \tau}$
Under $\mathbf{T}:\left\{\begin{array}{lll}\eta(2 \tau) & \rightarrow & e^{i \pi / 6} \eta(2 \tau) \\ \eta(\tau / 2) & \rightarrow & \eta((\tau+1) / 2) \\ \eta((\tau+1) / 2) & \rightarrow & e^{i \pi / 12} \eta(\tau / 2)\end{array}\right.$

$$
\text { Unders: }\left\{\begin{aligned}
\eta(2 \tau) & \rightarrow \sqrt{-i \tau / 2} \eta(\tau / 2) \\
\eta(\tau / 2) & \rightarrow \sqrt{-2 i \tau} \eta(2 \tau) \\
\eta\left(\frac{(\tau+1)}{2}\right) & \rightarrow e^{-i \pi / 12} \sqrt{-i \tau(\sqrt{3}-i)} \eta\left(\frac{(\tau+1)}{2}\right)
\end{aligned}\right.
$$

$$
\operatorname{Id}\left[a_{-}, b_{-}\right]:=\{\{\operatorname{Mod}[a, b], 0\},\{0, \operatorname{Mod}[a, b]\}\}
$$

$$
\begin{aligned}
& \operatorname{Id}[-1,2] \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \operatorname{Id}[-1,3] \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

