The effect of light sea quark symmetry breaking on polarized nucleus and sum rules

Fatemeh Arbabifar ${ }^{1}$ * and Shahin Atashbar Tehrani ${ }^{2}$
${ }^{12}$ Department of Physics, Nasibeh campus, Farhangian University, Tehran,Iran School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5591, Tehran, Iran (Dated: April 30, 2022)

INTRODUCTION

Deep Inelastic Scattering (DIS) of leptons from nucleons is one of the new methods of understanding the ture lepton and hadron colliders, Regarding this, the experimental groups such as E142, E143, COMPASS HERMES, and JLAB have published their experimental results from huge particle accelerators [1-6]. The polarized structure functions of nucleons and nuclei, which are usually determined by the empirical results of these experiments at high energies, provide useful information about spin distribution on partons of nucleon and nucle ons within the nucleus and assess the different models for understanding their structures [7]. In the simplest image of the ${ }^{3} \mathrm{He}$ nucleus, all nucleons are in the S state wherein two protons with opposite spins exist, so their spins in polarization is determined solely by neutron spin. Therefore, the use of ${ }^{3} \mathrm{He}$ targets in DIS experiments of leptons from the polarized target is common and is considered as the alternative target of the neutron. The same thing happens for ${ }^{3} \mathrm{H}$ by replacing neutrons with protons, However, in more precise calculations and by considering other components of the three-particle wave, such as S and D states, the protons spins are no longer nullified in the ${ }^{3} \mathrm{He}$ structure function and must be considered. Also it is notable that knowing the distribution of momentum and the energy of the electron scattered off the nucleon limits the probability of obtaining information about the targets [8].

The main purpose of these experiments is to assess the quantity of the nucleons spin fractions carried by the quark and gluon. In most of the verified phenomenological models, the nucleon spin fractions carried by the sea quarks are considered equal, and symmetry breaking is not considered, i.e. $\delta \bar{u}=\delta \bar{d}=\delta \bar{s}[9-49]$. However, in some of the more precise models, where both flavor
$\operatorname{SU}(2)$ and $\operatorname{SU}(3)$ symmetry breaking is taken into consideration, the nucleon spin fraction carried by light sea sideration, the nucleon spin fraction carried by light sea
quarks are considered unequal as $\delta \bar{u} \neq \delta \bar{d} \neq \delta \bar{s}[50-55)$. quarks are considered unequal as $\delta \bar{u} \neq \delta \bar{d} \neq \delta \bar{s}[50-55]$.
In the current research, both of the mentioned phenomenological models are applied and the polarized structure functions of nucleons and nuclei calculated through the results of these two models are compared. In the analysis of the NAAMY21 model [16], the polarized deep inelastic scattering data are used, and the polarized parton distribution functions of protons, neutrons, and deuterons are calculated in NLO approximation, disregarding symmetry breaking. In the second phenomenological model AKS14 [54], the asymmetry data of inclusive and semi-inclusive polarized deep inelastic scattry breaking are taken into consideration. The Pegasus try breaking are taken into consideration. The Pegasus software package
and fitting was performed on the experimental data. The and fitting was performed on the experimental data. The
number of experimental data is 863 for NAAMY21 [16] number of experimental data is 863 for NAAMr21 [16]
analysis and 1149 for AKS14 [54] analysis. Finally, the polarized parton distribution functions are calculated in NLO approximation. In the current article, after calculating the momentum of the polarized structure functions created by the parton distribution functions of the two aforementioned models in the Mellin transform, the DGLAP equations [7] are solved. Then, using Jacobi polynomials, the polarized structure functions of nucleons are calculated in the Bjorken x variable space. Fiuses of Helium-3 $\left({ }^{3} \mathrm{He}\right)$ and tritium $\left({ }^{3} \mathrm{H}\right)$ are extracted
POLARIZED STRUCTURE FUNCTIONS OF

POLARIZED STRUCTURE FUNCTIONS
OF NUCLEI
For nuclei, the polarized structure function equation will $g_{1}^{{ }^{3} \mathrm{He}}=\int_{x}^{3} \frac{d y}{y} \Delta f_{{ }_{\mathrm{He}}}^{n}(y) g_{1}^{n}(x / y)+2 \int_{x}^{3} \frac{d y}{y} \Delta f_{\mathrm{B} \mathrm{He}}^{p}(y) g_{1}^{p}(x / y)$ $-0.014\left(g_{1}^{p}(x)-4 g_{1}^{n}(x)\right)$, and
$g_{1}^{{ }^{3} \mathrm{H}}=2 \int_{x}^{3} \frac{d y}{y} \Delta f_{s_{\mathrm{H}}}^{n}(y) g_{1}^{p}(x / y)+\int_{x}^{3} \frac{d y}{y} \Delta f_{3_{\mathrm{H}}}^{p}(y) g_{1}^{n}(x / y)$
$+0.014\left(g_{1}^{p}(x)-4 g_{1}^{n}(x)\right)$
(19)
the calculation of their polarized structure function is performed usingion of the
contribution of proton and neutron polarized structure contribution of proton and neutron polarized structure
function in addition to the spin-dependent nucleon lightcone momentum distributions $\Delta f_{5_{\mathrm{He}}^{N}}^{N}$ and $\Delta f_{\mathrm{s}_{\mathrm{He}}}^{N}$

BJORKEN SUM RULE EFREMOV-LEADER-TERYAEV (ELT) SUM

The Efremov-Leader-Teryaev (ELT) sum rule can be

 obtained via integrating the valence part of g_{1} and g_{2}structure functions over x variable of Bjorken in the limit structure func
$m_{q} \rightarrow 0$

$\int_{0}^{1} x\left[g_{1}^{V}(x)+2 g_{2}^{V}(x)\right] d x=0$
 (27)

where $g_{1(2)}^{V}$ denotes the valence quark contributions to
$g_{1(2)}$. When symmetry of light sea quarks is considered $g_{1(2)}$. When symmetry of light sea quarks is considered
and they are assumed to carry equal fraction of spin in protons and neutrons ELT sum rule can be written as
$\int_{0}^{1} x\left[g_{1}^{p}(x)-g_{1}^{n}+2\left(g_{2}^{p}(x)-g_{2}^{n}(x)\right] d x=0 . \quad(28)\right.$
Considering light sea quarks symmetry breaking the ELT sum rule is derived directly from Eq. 27. The value of left
hand side of above equation is obtained -0.011 ± 0.008 hand side of above equation is obtained -0.011 ± 0.008 from E155[85] analysis at $Q^{2}=5 \mathrm{GeV}^{2}$. This value is ob-
tained 0.01017 ± 0.00004 and -0.030763 ± 0.0004071 from tained 0.01017 ± 0.00004 and -0.030763 ± 0.0004071 fron
NAAMY21 and AKS14 respectively. It seems the consideration of symmetry breaking makes the results negative and closer to E155 analysis. Also it is concluded that dis-
regarding the symmetry of $\delta \bar{u}, \delta \bar{d}$ and $\delta \bar{s}$ can be effective regarding the symmetry of $\delta \bar{u}, \delta \bar{d}$ and $\delta \overline{\bar{s}}$ can be effective
on the distance of EFM sum rule from zero.

CONCLUSIONS

Figures 5, 6, and 7 compare polarized structure functions of proton, neutron,
and deuteron from AKS14 and NAAMY21 with E143 experimental data at $Q^{2}=2 \mathrm{GeV}^{2}$. According to the figures, when symmetry breaking is taken into consideration by a model, the extracted results are better than ${ }_{3}{ }_{3} \mathrm{He}$ symmetry breaking is disregarded. Figure 9 shows $g_{1}^{3} \mathrm{He}$ polarized structure function from E142 and JLAB experimental data and compares them with the same ex-
tractions from three analyses of NAAMY21, AKS14 and TKA17 in NLO and NNLO approximations. As shown in the figures, the polarized nuclei structure function extracted from AKS14 model, with breaking the symmetry of light sea quarks, passes more data than other models, specially at $0.1 \leq x \leq 0.4$ region. Figure 10 compares $g_{1}^{3} H$ structure function extracted from three mentioned models with HERMES experimental data. Again the extracted nuclei polarized structure function from Andels considering the symmetry of light sea quarks. In Fig 11, the $x^{2} g_{1}^{3} H e$ structure function is compared with E142, JLAB04, JLAB03 and JLAB16 experimental data in NLO and NNLO approximations. The results look better at small x for AKS14 model with symmetry breaking consideration. Observing that the peaks and valleys of light sea quarks spin distribution graphs of AKS14 model are in the range of $x \leq 0.4$, their effects in these
areas will be more significant. This prediction is also areas will be more significant. This prediction is also
proven by the results of the present article in most of the figures. In Figs 12 and 13, the $g_{2}^{3} \mathrm{He}$ structure func-

In conclusion, the presented results demonstrates that a detailed description of the spin structure of the nucleon, nuclel, sum rules and Lorentz color force components
of polarized structure when both flavor $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ symmetry breaking are considered and three flavour of light sea quarks do not carry the same fraction of nucleon spin in the analy

