Observation of new charmonium decays at BESII

BEST

Yong Xie* (on behalf of BESIII Collaboration)

Shandong University, Qingdao 266237, P. R. China

Introduction

- Since its discovery in 1974, the charmonium system is always considered an ideal place for testing the non-perturbative regime of the QCD theory [1].
- Based on a 448 million $\psi(2S)$ sample, several decay channels of charmonium states have been searched for at BESIII recently. The decays of $\psi(2S) \rightarrow \Xi(1530)^0 \overline{\Xi}(1530)^0, \ \psi(2S) \rightarrow \Xi(1530)^0$ $\Xi(1530)^0 \overline{\Xi}^0, \ \chi_{c1} \rightarrow \Xi^0 \overline{\Xi}^0 \text{ and } \chi_{c2} \rightarrow \Xi^0 \overline{\Xi}^0 \text{ have}$ been observed for the first time.

Observation of $\psi(2S) \rightarrow \omega K_S^0 K_S^0$ decay [3]

Search for new decay modes of the h_c and the $\psi_2(3823)$

• Using data sample above 4.0 GeV, the new decay modes of $h_c \rightarrow \pi^0 J/\psi, \ \psi_2(3823) \rightarrow$ $\gamma \chi_{c0}, \ \gamma \chi_{c2}, \ \pi \pi J/\psi, \ \eta J/\psi$ and $\pi^0 J/\psi$ have been searched for.

The BESIII is unique for studying charmonium decays!

Figure 1: The BESIII detector

Figure 3: Fit to the $M_{\pi^+\pi^-\pi^0}$ distributions of the accepted candidates in the 2D signal region for the $\psi(2S)$ data.

- The first observation! (Statistical significance > 5σ
- Branching fraction:
- $\mathcal{B}[\psi(2S) \to \omega K_S^0 K_S^0] = (7.04 \pm 0.39 \pm 0.36) \times 10^{-5}$
- The ratio $\frac{\mathcal{B}[\psi(2S) \rightarrow \omega K_S^0 K_S^0]}{\mathcal{B}[J/\psi \rightarrow \omega K_S^0 K_S^0]} = (14.8 \pm 3.2)\%$ shows consistency with the "12% rule" within uncertainty.

Observation of $\chi_{c1} \rightarrow \Xi^0 \Xi^0$ and $\chi_{c2} \rightarrow \Xi^0 \overline{\Xi}^0$ decays [4]

Figure 5: The $RM(\pi^+\pi^-)$ distribution from the study of $e^+e^- \to \pi^+\pi^- h_c \to \pi^+\pi^-\pi^0 J/\psi$ (left a) [5].

The $RM(\pi^+\pi^-)$ distributions from the $e^+e^- \rightarrow$ $\pi^+\pi^-\psi_2(3823)$ process for the corresponding decays of $\psi_2(3823)$ (left b-f) [6]

The $M(\gamma_H J/\psi)$ distribution with the events in the $\psi_2(3823)$ signal region for the study of $\psi_2(3823) \rightarrow \gamma \chi_{c1,c2}$ (right), where γ_H is the one with higher energy of the two signal photons [7].

- Using the data sample above 4.0 GeV, the new decay modes of the h_c and $\psi_2(3823)$ have been searched for.
- Branching fractions (upper limits at 90% C.L.): $\mathcal{B}\left(h_c \to \pi^0 J/\psi\right) / \mathcal{B}\left(h_c \to \gamma \eta_c \to \gamma K^+ K^- \pi^0\right) < 7.5 \times 10^{-2}$ $\mathcal{B}(h_c \to \pi^0 J/\psi) < 4.7 \times 10^{-4}$ $\mathcal{B}[\psi_2(3823) \to \pi^+\pi^- J/\psi] / \mathcal{B}[\psi_2(3823) \to \gamma \chi_{c1}] < 0.06$ $\mathcal{B}[\psi_2(3823) \to \pi^0 \pi^0 J/\psi] / \mathcal{B}[\psi_2(3823) \to \gamma \chi_{c1}] < 0.11$ $\mathcal{B}[\psi_2(3823) \to \eta J/\psi] / \mathcal{B}[\psi_2(3823) \to \gamma \chi_{c1}] < 0.14$ $\mathcal{B}[\psi_2(3823) \to \pi^0 J/\psi] / \mathcal{B}[\psi_2(3823) \to \gamma \chi_{c1}] < 0.03$ $\mathcal{B}\left[\psi_2(3823) \to \gamma \chi_{c0}\right] / \mathcal{B}\left[\psi_2(3823) \to \gamma \chi_{c1}\right] < 0.24$ $\mathcal{B}[\psi_2(3823) \to \gamma \chi_{c2}] / \mathcal{B}[\psi_2(3823) \to \gamma \chi_{c1}] = 0.33 \pm 0.12$ (or < 0.51 at 90% C.L.)

- Beam energy: 1.0 2.47 GeV
- Luminosity: 1×10^{33} cm⁻²s⁻¹ at 3.773 GeV
- Charmonium physics:
 - Study of the $\psi(2S)$ decays: a 448 million $\psi(2S)$ sample!
 - Study of the χ_{cJ} decays: $\mathcal{B}[\psi(2S) \rightarrow \gamma \chi_{cJ}] \approx 10\%$
 - Study of the excited charmonium decays: a 21.3 fb⁻¹ data sample at 4 - 4.95 GeV.

Observation of $\psi(2S) \to \Xi(1530)^0 \overline{\Xi}(1530)^0$ and $\Xi(1530)^{0}\bar{\Xi}^{0}$ decays [2]

Figure 2:Simultaneous fits to the $M_{\Xi^-\pi^+}^{\text{recoil}}$ (left) and $M_{\Xi^+\pi^-}^{\text{recoil}}$ (right) spectra for $\psi(2S) \rightarrow \Xi(1530)^0 \overline{\Xi}(1530)^0$ and $\Xi(1530)^0 \overline{\Xi}^0$ decays, respectively.

Figure 4: Fits to the $M_{\gamma}^{\text{recoil}}$ distributions for the (a) $\chi_{cJ} \rightarrow$ $\Xi^-\bar{\Xi}^+$ and (b) $\chi_{cJ} \to \Xi^0\bar{\Xi}^0$ processes.

Study of the $\psi_2(3823)$:

Figure 6:The $M^{\rm recoil}(\pi^+\pi^-)$ distributions for one-photon events (left) and multi-photon events (right) from the $e^+e^- \rightarrow$ $\pi^+\pi^-\psi_2(3823)$ process [7].

- A statistical significance of 13.4σ for the $\psi_2(3823)$ signal!
- The most precise measurement of the $\psi_2(3823)$ mass and the most stringent constraint on its width to date!
 - $M[\psi_2(3823)] = 3823.12 \pm 0.43 \pm 0.13 \text{ MeV}/c^2$
 - $\Gamma[\psi_2(3823)] < 2.9 \text{ MeV} \text{ at } 90\% \text{ C.L.}$
- This will help refine the parameters of potential

- The first observation! (Statistical significances $> 10\sigma$)
- Branching fractions: $\mathcal{B}\left[\psi(2S) \to \Xi(1530)^0 \bar{\Xi}(1530)^0\right] = (6.77 \pm 0.14 \pm 0.14)$ $(0.39) \times 10^{-5}$ $\mathcal{B}\left[\psi(2S) \to \Xi(1530)^0 \bar{\Xi}^0\right] = (0.53 \pm 0.04 \pm 0.03) \times$
- The "12% rule", $\frac{\mathcal{B}[\psi(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[J/\psi \rightarrow \text{hadrons}]} \approx 12\%$, is tested in the decay $\psi \rightarrow \Xi(1530)\Xi$ and found to be highly violated.
- The first observation! (Statistical significances of 7σ for $\chi_{c1} \to \Xi^0 \Xi^0$ and 15σ for $\chi_{c2} \to \Xi^0 \Xi^0$)
- Branching fractions: $\mathcal{B}(\chi_{c0} \to \Xi^- \Xi^+) = (4.43 \pm 0.08 \pm 0.18) \times 10^{-4}$ $\mathcal{B}(\chi_{c0} \to \Xi^0 \Xi^0) = (4.67 \pm 0.19 \pm 0.26) \times 10^{-4}$ $\mathcal{B}(\chi_{c1} \to \Xi^{-}\Xi^{+}) = (0.58 \pm 0.04 \pm 0.05) \times 10^{-4}$ $\mathcal{B}(\chi_{c1} \to \Xi^0 \Xi^0) = (0.75 \pm 0.11 \pm 0.06) \times 10^{-4}$ $\mathcal{B}(\chi_{c2} \to \Xi^{-}\Xi^{+}) = (1.44 \pm 0.06 \pm 0.11) \times 10^{-4}$ $\mathcal{B}(\chi_{c2} \to \Xi^0 \Xi^0) = (1.83 \pm 0.15 \pm 0.16) \times 10^{-4}$
- **Significantly improved precision** for the branching fractions and parameters of the angular distributions!

models and significantly reduce the uncertainties (ca. ± 50 MeV) of the D-wave states predicted by the potential model [8].

References

- J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974); J. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).
- M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104, 092012 (2021). [2]
- M. Ablikim *et al.* (BESIII Collaboration), Phys. Rev. D **104**, 092003 (2021).
- M. Ablikim et al. (BESIII Collaboration), J. High Energ. Phys. 2022, 74 (2022). [4]
- [5] M. Ablikim et al. (BESIII Collaboration), J. High Energ. Phys. 2022, 3 (2022).
- [6] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 103, L091102 (2021).
- [7] M. Ablikim et al. (BESIII Collaboration), [arXiv:2203.05815].
- T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005). [8]

*Email: xieyong@mail.sdu.edu.cn