

Jianhui Zhu (INFN-Padova & CCNU) for the ALICE Collaboration

Constraining hadronization with prompt and non-prompt charm baryons in small collision systems with ALICE at the LHC

$\mathsf{EP2022}$ International Conference on High Energy Physics Bologna (Italy)

Heavy-flavour hadron formation in small collision systems

- "Point-like" object interaction
- Pure fragmentation

Superposition of many "pointlike object" collisions ?

MPI and color reconnection modify hadronization ?

Heavy-flavour hadron production cross section based on factorisation approach Fragmentation functions assumed to be universal among collision systems and constrained from e⁺e⁻ and e⁻p collisions

$$\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{\mathrm{a}},\mu_{\mathrm{F}})PDF(x_{\mathrm{b}},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \otimes D_{\mathrm{c}\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{\mathrm{F}})$$

parton distribution function (PDF) (non-perturbative)

partonic cross section (perturbative)

Ratios of particle species -> ratios of fragmentation fractions, sensitive to heavy-quark hadronization

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

hadronisation by fragmentation (non-perturbative)

Charm-hadron reconstruction

- Particle identification of decay tracks
- Selections on the displaced decay topology
- Machine-learning (ML) techniques used

 $D^0: D^0 \to K^-\pi^+$ $D^+: D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*+}: D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ $D_s^+: D_s^+ \to \phi \pi^+ \to K^+ K^- \pi^+$ $\Lambda_{c}^{+}: \Lambda_{c}^{+} \to pK^{-}\pi^{+}, \Lambda_{c}^{+} \to pK_{s}^{0}$ $\Sigma_{c}^{0,++}: \Sigma_{c}^{0} \to \Lambda_{c}^{+}\pi^{-}, \Sigma_{c}^{++} \to \Lambda_{c}^{+}\pi^{+}$ $\Xi_c^0: \Xi_c^0 \to \Xi^- \pi^+, \Xi_c^0 \to e^+ \Xi^- \nu_e$ $\Xi_{\rm c}^+:\Xi_{\rm c}^+\to\Xi^-\pi^+\pi^+$ $\Omega_{\rm c}^0:\Omega_{\rm c}^0\to\Omega^-\pi^+$

Charm mesons

Charm baryons

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

arXiv:2205.13993

HF meson-to-meson production ratios in pp collisions

- Prompt and non-prompt D meson ratios independent of $p_{\rm T}$ and collision system
- and with e⁺e⁻ and e⁻p measurements

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Agreement with model calculations based on a factorisation approach and relying on universal fragmentation functions

FONLL: M. Cacciari, et al., JHEP 10 (2012) 137 PYTHIA 8: P. Skands, et al., EPJC 74 (2014) 3024

Baryon-to-meson ratios: Λ_c^+/D^0 in pp collisions

- $\Lambda_{\rm c}^+/{\rm D}^0$ measured down to $p_{\rm T}=0$ in pp collisions
- Strong $p_{\rm T}$ dependence
- NO collision energy dependence
- Significantly higher than e⁺e⁻ results

- Largely underestimated by PYTHIA 8 Monash^[1]

ICHEP - Jianhui Zhu

PYTHIA 8 Monash: e^+e^- charm fragmentation functions

Well described by PYTHIA 8 CR Mode2^[2], SHM^[3]+RQM^[4], Catania^[5]

PYTHIA 8 CR Mode2: color reconnection (CR) beyond leading color (BLC) approximation Catania: transport model with hadronization via coalescence+fragmentation SHM+RQM: statistical hadronization model (SHM) with augmented set of charm-baryon states according to relativistic quark model (RQM)

Constraining hadronization with charm baryons with ALICE

Non-prompt Λ_c^+ production in pp@13 TeV

LHCb: Phys.Rev.D 100 (2019), 031102

- $p_{\rm T}$ dependence well reproduced by theoretical calculations
 - $\Lambda_{\rm b}^0$ fragmentation fractions measured by LHCb
 - Folding with $H_{\rm b} \rightarrow \Lambda_{\rm c}^+ + X$ decay from PYTHIA 8

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

- Non-prompt vs. prompt Λ_c^+/D^0 Similar baryon-to-meson ratio enhancement Non-prompt Λ_c^+/D^0 vs. models
 - Well reproduced by FONLL + PYTHIA 8 for $p_{\rm T} > 4 \ {\rm GeV}/c$

Heavier charm baryons: $\Sigma_c^{0,+,++}$ in pp@13 TeV

Feed-down from $\Sigma_c^{0,+,++}$ partially explains Λ_c^+/D^0 enhancement • Λ_c^+ ($\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+ = 0.38 \pm 0.06$ (stat.) ± 0.06 (syst.)

PRL 128 (2022) 1, 012001

- PYTHIA 8 Monash^[1] severely underestimates Λ_c^+ (
- PYTHIA 8 CR Modes^[2] overestimate Λ_c^+ ($\leftarrow \Sigma_c^{0,+,+}$
- Well described by SHM^[3]+RQM^[4], Catania^[5] and

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

$\Sigma_c^{0,+,++}/D^0$ enhancement in pp w.r.t. e⁺e⁻

$$(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+ \text{ and } \Sigma_c^{0,+,++}/D^0$$

-+)/ Λ_c^+ , but describe $\Sigma_c^{0,+,++}/D^0$
OCM^[6]

📄 [1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] M. He and R. Rapp, PLB 795 (2019) 117-121 [4] D. Ebert, et al., PRD 84:014025, 2011 [5] V. Minissale, et al., PLB 821 (2021) 136622 [6] J. Song, et al., EPJC (2018) 78: 344

Strange-charm baryons: Ξ_c^0 and Ξ_c^+ in pp@5.02 and 13 TeV

- Ξ_c^0/D^0 in agreement with Ξ_c^+/D^0 and similar p_T trend as Λ_c^+/D^0
- Significantly underestimated by models^[1,2,3,4,5]
 - Different from $D_s^+/(D^0 + D^+) \rightarrow \text{baryons are "strange"}$?

- [1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003
- [3] M. He and R. Rapp, PLB 795 (2019) 117-121
- [4] D. Ebert, et al., PRD 84:014025, 2011

ICHEP - Jianhui Zhu

[5] J. Song, et al., EPJC (2018) 78: 344 [6] V. Minissale, et al., PLB 821 (2021) 136622 [7] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

PRL 127 (2021) 27, 272001

- Catania^[6] gets close to measurements
- $\Xi_{c}^{0,+}/\Sigma_{c}^{0,+,++}$ in agreement with PYTHIA 8 Monash
 - Similar suppression of $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$ in e^+e^- ?
 - Matter of similar (diquark) mass ?
 - $m(uu, ud, dd)_1 \approx m(us)_0$

Constraining hadronization with charm baryons with ALICE

Double strange-charm baryon: BR $\times \Omega_c^0$ in pp@13 TeV

- Theoretical calculations: BR($\Omega_c^0 \rightarrow \pi^+\Omega^-$) = 0.51 $^{+2.19}_{-0.31}$ %
- PYTHIA 8 Monash^[1] largely underestimates Ω_c^0/D^0 and Ω_c^0/Ξ_c^0
 - ➡ Do not reproduce strangeness enhancement in pp
- PYTHIA 8 CR-BLC^[2] NOT enough to describe the measurement
- Further enhancement with simple coalescence QCM^[3] still shows a hint of underestimation
- Catania^[4] closer to data points, additional resonances decay considered

ICHEP - Jianhui Zhu

1		
)		

Ratio	ALICE (pp 13 TeV)	Belle (e ⁺ e ⁻ 10.52
	$2 < p_{\mathrm{T}} < 12 \ \mathrm{GeV}/c$	visible
${ m BR}(\Omega_{ m c}^0 o \Omega^- \pi^+) imes \sigma(\Omega_{ m c}^0) / \sigma(\Lambda_{ m c}^+)$	$(1.96 \pm 0.42 \pm 0.13) \times 10^{-3}$	$(2.24 \pm 0.29 \pm 0.2)$
${ m BR}(\Omega_{ m c}^{0} o \Omega^{-} \pi^{+}) imes \sigma(\Omega_{ m c}^{0}) / \sigma(\Xi_{ m c}^{0})$	$(3.99\pm0.96\pm0.96) imes10^{-3}$	$(8.58 \pm 1.15 \pm 1.$

Constraining hadronization with charm baryons with ALICE

 $\Omega_c^0/\Lambda_c^+(pp)$ $\Omega_c^0/\Lambda_c^+(e^+e^-)$ $\Omega_c^0/\Xi_c^0(pp)$ $\Omega_{c}^{0}/\Xi_{c}^{0}(e^{+}e^{-})$

Sizeable contribution of Ω_c^0 to charm production at LHC energies ?

arXiv:2205.13993

[1] P. Skands, et al., EPJC 74 (2014) 3024 [2] J. Christiansen, et al., JHEP 08 (2015) 003 [3] J. Song, et al., EPJC (2018) 78: 344 [4] V. Minissale, et al., PLB 821 (2021) 136622 [5] Belle e⁺e⁻: PRD 97 (2018) 7, 072005

Λ_c^+/D^0 in p-Pb@5.02 TeV

- - Hardening of $p_{\rm T}$ by 3.7 σ according to $\langle p_{\rm T} \rangle$
 - Radial flow?

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

[1] PRC 104 (2021), 054905

[2] CMS: PRC 101 (2020), 064906

Charm fragmentation fractions

- Charm fragmentation fractions in hadronic collisions at 5.02 TeV
 - pp: PRD 105 (2022) 1, L011103
 - p-Pb:
 - D^0 , Λ_c^+ (new): measured down to $p_T = 0$
 - D^+ , D_s^+ : extrapolated to $p_T = 0$ using POWHEG+PYTHIA
 - ► Ξ_c^0 not measured yet $\rightarrow \sigma_{pp}(\Xi_c^0) \times 208 \times R_{pPb}(\Lambda_c^+)$

- pp and p-Pb results compatible
- ▶ Significant baryon enhancement w.r.t. e⁺e⁻ and e⁻p

Charm fragmentation fractions are not universal

[1] B factories: EPJC 76 no. 7, (2016) 397

[2] LEP: EPJC 75 no. 1, (2015) 19

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

cc production cross section

ALI-PREL-503060

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

[1] STAR: Phys. Rev. D 86 (2012) 072013 [2] PHENIX: Phys. Rev. C 84 (2011) 044905 [3] FONLL: JHEP 10 (2012) 137

[4] Charm NNLO: PRL 118 (2017) 12, 122001

Sum of all charm hadron ground states

- Results in pp@2.76 & 7 TeV from D mesons updated with FFs from pp@5.02 TeV
 - ~40% increase driven by observed baryon enhancement
- On upper edge of FONLL^[3] and NNLO^[4] calculations

mmary

- $\Lambda_{\rm c}^+$ was measured down to $p_{\rm T} = 0$ in pp and p-Pb collisions
- Charm hadronisation mechanisms need further investigations Coalescence in pp?
- Evidence that the charm fragmentation fractions are not universal
- - enhancement of $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 with multiplicity should be expected. Will we see it?
 - Same mechanism in all collision systems? Modified hadronisation? Radial flow?

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Re-distribution of $p_{\rm T}$ that acts differently for $\Lambda_c^+/{
m D}^0$, no modification of overall $p_{\rm T}$ -integrated yield ratio

Based on what was seen in strange sector ((multi-)strange baryon enhancement as a function of multiplicity),

HF meson-to-meson production ratios in pp collisions

- Prompt and non-prompt D meson ratios independent of $p_{\rm T}$ and collision system
- and with e⁺e⁻ and e⁻p measurements
- Compatible results between ALICE and LHCb

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Agreement with model calculations based on a factorisation approach and relying on universal fragmentation functions

FONLL: M. Cacciari, et al., JHEP 10 (2012) 137 PYTHIA 8: P. Skands, et al., EPJC 74 (2014) 3024

Charm and beauty baryon-to-meson ratio in pp collisions

- Charm baryon-to-meson ratios significantly higher than e^+e^- results PYTHIA 8 Monash (e^+e^- charm fragmentation functions)
- Beauty baryon-to-meson enhancement at low $p_{\rm T}$ also observed

ALI-PREL-502456

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Non-prompt Λ_c^+/D^0 ratio in pp@13 TeV

- Non-prompt Λ_c^+/D^0 : pp vs. e^+e^-
 - Enhanced beauty-baryon production in pp w.r.t. e^+e^- (different hadronization mechanism?)

ICHEP - Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Non-prompt Λ_c^+ production in p-Pb@5.02 TeV

- Non-prompt Λ_c^+
 - $p_{\rm T}$ dependence well reproduced by theoretical calculations, same as pp
- ICHEP Jianhui Zhu

Constraining hadronization with charm baryons with ALICE

Compatible with unity and with prompt $\Lambda_c^+ R_{pPb}$ within the large uncertainties

