ICHEP 2022

Contribution ID: 484

Type: Poster

New physics sensitivity in $\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^-$ and $\Lambda_b \to \Lambda^{(*)} \nu \bar{\nu}$ baryonic decays

Friday, 8 July 2022 20:10 (20 minutes)

The flavor changing neutral b decays with di-leptons and di-neutrinos in the final state provide a great platform to explore physics beyond the standard model(SM). The recent measurements predicted by LHCb on R_K , R_{K_S} , R_{K*+} , $\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$ and $\mathcal{B}(B_s \to \mu^+ \mu^-)$ proceeding via $b \to s\ell^+\ell^-$ quark level transitions show a significant deviation from the standard model expectations. Very recently, Belle II collaboration reported a more precise upper bound of the branching fraction of $\mathcal{B}(B \to K^+ \nu \bar{\nu}) < 4.1 \times 10^{-5}$ by employing a new inclusive tagging approach. The $b \to s\ell^+\ell^-$ and $b \to s\nu\bar{\nu}$ decay channels are related in the SM as well as in beyond the SM physics. In the beyond SM physics, they are related via $SU(2)_L$ gauge symmetry and can be studied simultaneously in a model independent standard model effective field theory(SMEFT) approach. Moreover, $b \to s\nu\bar{\nu}$ decay channels are theoretically cleaner than the corresponding $b \to s\ell^+\ell^-$ decays due to the absence of non factorizable corrections and photonic penguin contributions. In this context, we perform a combined analysis of $\Lambda_b \to \Lambda^{(*)}\mu^+\mu^-$ and $\Lambda_b \to \Lambda^{(*)}\nu\bar{\nu}$ decay modes and study the implication of $b \to s\ell^+\ell^-$ anomalies in a model independent SMEFT approach. We give predictions of several physical observables within SM and within several new physics scenerios.

In-person participation

No

Primary authors: DAS, Nilakshi (NIT, Silchar); Dr DUTTA, Rupak (National Institute of Technology, Silchar)

Presenter: DAS, Nilakshi (NIT, Silchar)

Session Classification: Poster Session

Track Classification: Quark and Lepton Flavour Physics