Introduction

- Measurements of various LFU observables in $b \rightarrow s l^+ l^-$ decays continue to disagree with the SM.
- The $b \to s l^+ l^-$ and $b \to s \nu \bar{\nu}$ decays are closely related not only in SM but also in BSM.
- In BSM these decays are related via $SU(2)_L$ gauge symmetry which relates neutrinos to the left handed charged leptons.
- The B decays with $\nu\bar{\nu}$ final state are theoretically cleaner as they do not suffer from hadronic uncertainties beyond the form factors such as the non-factorizable corrections and photonic penguin contributions.
- Hence, we explore $\Lambda_b \to (\Lambda^* (\to pK^-), \Lambda (\to p\pi)) \mu^+ \mu^-$ and $\Lambda_b \to (\Lambda^* (\to pK^-), \Lambda (\to p\pi)) \nu \bar{\nu}$ decays under SMEFT framework.

	q^2 bins	Theoretical predictions	Experimental measurements	Deviation
R_K	[1.1, 6.0]	1 ± 0.01	$0.846^{+0.044}_{-0.041}$	$\sim 3.1\sigma$
$R_{K_S^0}$	[1.1, 6.0]	1 ± 0.01	$0.66^{+0.20}_{-0.14}$ (stat) $^{+0.02}_{-0.04}$ (syst)	$\sim 1.4\sigma$
R_{K^*}	[0.045, 1.1]	1 ± 0.01	$0.660^{+0.110}_{-0.070}$ (stat) ± 0.024 (syst)	
		1 ± 0.01	$0.52^{+0.36}_{-0.26}$ (stat) ± 0.05 (syst)	$\sim 2.2 - 2.5\sigma$
	[1.1, 6.0]	1 ± 0.01	$0.685^{+0.113}_{-0.069}$ (stat) ± 0.047 (syst)	
		1 ± 0.01	$0.96^{+0.45}_{-0.29}$ (stat) ± 0.11 (syst)	
$R_{K^{*+}}$	[0.045, 6.0]	1 ± 0.01	$0.70^{+0.18}_{-0.13}$ (stat) $^{+0.03}_{-0.04}$ (syst)	$\sim 1.5\sigma$
P_5'	[4.0, 6.0]	-0.757 ± 0.074	-0.21 ± 0.15	$\sim 3.3\sigma$
	[4.3, 6.0]	$-0.774_{-0.059-0.093}^{+0.0.061+0.087}$	$-0.96^{+0.22}_{-0.21}$ (stat) ± 0.16 (syst)	$\sim 1.0\sigma$
	[4.0, 8.0]	-0.881 ± 0.082	$-0.267^{+0.275}_{-0.269}$ (stat) ± 0.049 (syst)	$\sim 2.1\sigma$
$\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$	[1.1, 6.0]	$(5.37 \pm 0.66) \times 10^{-8}$	$(2.88 \pm 0.22) \times 10^{-8}$	$\sim 3.6\sigma$
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	$(3.66 \pm 0.14) \times 10^{-9}$	$(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$	-
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	-	$(4.4 \pm 0.07) \times 10^{-6}$	$< 1.6 \times 10^{-5}$	-
			$< 4.1 \times 10^{-5}$	
$\mathcal{B}(B^0 \to K^0 \nu \nu)$	-	$(4.1 \pm 0.05) \times 10^{-6}$	$< 2.6 \times 10^{-5}$	-
$\mathcal{B}(B^0 \to K^{0*} \nu \nu)$	-	$(9.5 \pm 0.09) \times 10^{-6}$	$< 1.8 \times 10^{-5}$	-
$\mathcal{B}(B^+ \to K^{+*} \nu \nu)$	-	$(10 \pm 1) \times 10^{-6}$	$< 4.0 \times 10^{-5}$	-

Table 1: Current status of $b \rightarrow sl^+l^-$

Theory

The effective Hamiltonian for $b \rightarrow s (l^+ l^-, \nu \bar{\nu})$ decays [1],

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i C_i \mathcal{O}_i + h.c.,$$

For i = L, R, the sum include the operators $\mathcal{O}_{L,R}$ contributing to $b \to s \nu \bar{\nu}$ decays where,

$$\mathcal{O}_L = (\bar{s}\gamma_\mu P_L b)(\bar{\nu}\gamma^\mu (1-\gamma_5)\nu), \quad \mathcal{O}_R = (\bar{s}\gamma_\mu P_R b)(\bar{\nu}\gamma^\mu (1-\gamma_5)\nu),$$

Here, $C_L = C_L^{SM} + C_L^{NP}$ with $C_L^{SM} = -6.38 \pm 0.06$ being the SM Wilson coefficient and $C_R = 0$ in SM. Similarly, for i = 9,10 the sum include the operators $\mathcal{O}_{9,10}^{(\prime)}$ contributing to $b \rightarrow s l^+ l^-$ decays where,

$$\mathcal{O}_L = (\bar{s}\gamma_\mu P_L b)(\bar{\nu}\gamma^\mu (1-\gamma_5)\nu), \quad \mathcal{O}_R = (\bar{s}\gamma_\mu P_R b)(\bar{\nu}\gamma^\mu (1-\gamma_5)\nu),$$

Here, $C_L = C_L^{SM} + C_L^{NP}$ with $C_L^{SM} = -6.38 \pm 0.06$ being the SM Wilson coefficient and $C_R = 0$ in SM. Similarly, for i = 9,10 the sum include the operators $\mathcal{O}_{9,10}^{(\prime)}$ contributing to $b \rightarrow s l^+ l^-$ decays where,

$$\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{l}\gamma^{\mu}l), \quad \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{l}\gamma^{\mu}\gamma_{5}l).$$

Starting from the effective Hamiltonian one can construct the various physical observable for $\Lambda_b \rightarrow$ $\Lambda^* (\to pK^-) l^+ l^-$ is defined as

$$\frac{d\mathcal{B}}{dq^2} = \frac{1}{3} \bigg[K_{1cc} + 2K_{1ss} + 2K_{2cc} + 4K_{2ss} + 2K_{3ss} \bigg].$$

Nilakshi Das and Rupak Dutta

National Institute of Technology Silchar - 788010, India

The 41th International conference on High Energy Physics (ICHEP-2022), Bologna (Italy), 6-13 July, 2022

(1)

(2)(5)
u).

 $_5)
u).$ (3)

(4)

$$F_L = 1 - \frac{2(K_{1cc} + 2K_{2cc})}{K_{1cc} + 2(K_{1ss} + K_{2cc} + 2K_{2c})}$$
$$A_{FB}^{\ell} = \frac{3(K_{1c} + 2K_{2c})}{2[K_{1cc} + 2(K_{1ss} + K_{2cc} + 2K_{2c})]}$$

• Similarly, for $\Lambda_b \to \Lambda(\to p\pi)l^+l^-$ is defined as

$$\frac{d\mathcal{B}}{dq^2} = 2K_{1ss} + K_{1cc} \qquad F_L = \frac{2K_{1ss} - K_{1cc}}{2K_{1ss} + K_{1cc}} \qquad A_{\text{FB}}^{\ell}$$

For the $\Lambda_b \to (\Lambda(\to p\pi), \Lambda^*(\to pK^-))\nu\bar{\nu}$ we replaced $m_l = 0$ and calculate the different physical observable. We make use of lattice QCD form factor inputs for both channels[2,3]. Here K'_i s are the angular coefficient.

Results and Discussions

• The WC $C_{9(\prime),10(\prime)}$ of $b \to s \mu^+ \mu^-$ and C_L, C_R of $b \to s \nu \bar{\nu}$ are defined in terms of SMEFT coefficient

$$C_{9} = C_{9}^{\text{SM}} + \widetilde{c}_{qe} + \widetilde{c}_{ql}^{(1)} + C_{10} = C_{10}^{\text{SM}} + \widetilde{c}_{qe} - \widetilde{c}_{ql}^{(1)} - C_{ql}^{(1)} - C_{l}^{\nu} = C_{L}^{\text{SM}} + \widetilde{c}_{ql}^{(1)} - \widetilde{c}_{ql}^{(3)} + C_{l}^{\prime} = \widetilde{c}_{de} + \widetilde{c}_{dl} - \zeta \widetilde{c}_{Z}^{\prime} + C_{10}^{\prime} = \widetilde{c}_{de} - \widetilde{c}_{dl} + \widetilde{c}_{Z}^{\prime} + \widetilde{c}_{R}^{\prime} = \widetilde{c}_{dl} + \widetilde{c}_{Z}^{\prime}$$

- NP considered in the left handed WC $C_{9,10}$ and right handed WC $C_{9',10'}$ in $b \rightarrow s \mu^+ \mu^-$.
- We refer to [4] for the SMEFT best fits results. The fits are obtained by fitting the recent $b \rightarrow sll$ data.
- We consider two best NP scenarios $(\tilde{c}_{al}^{(3)}, \tilde{c}_{Z}') = (-3.824, -4.905)$ and $(\tilde{c}_{Z}, \tilde{c}_{Z}') = (4.560, -3.938)$

-			
$\Lambda_b \to \Lambda^* (\to p K$	$(X^{-})\mu^{+}\mu^{-}$ [16.		
SM	$(\widetilde{c}_{ql}^{(3)},\widetilde{c}_{l}^{\prime})$		
0.645 ± 0.045	0.261 ± 0		
0.378 ± 0.031	0.414 ± 0		
-0.048 ± 0.033	0.043 ± 0		
$\Lambda_b \to \Lambda^* (\to pK^-) \nu \bar{\nu}$			
SM	$(\widetilde{c}_{ql}^{(3)},\widetilde{c}_{l}^{\prime})$		
(1.037 ± 0.759)	0.305 ± 0		
0.385 ± 0.033	$0.536 \pm 0.536 \pm 0.53$		
$\Lambda_b \to \Lambda(\to p\pi)\nu\bar{\nu}$			
SM	$(\widetilde{c}_{ql}^{(3)},\widetilde{c}_{l}^{\prime})$		
(1.798 ± 0.133)	1.036 ± 0		
0.472 ± 0.028	0.589 ± 0		
	$\Lambda_b \rightarrow \Lambda^* (\rightarrow p K)$ SM 0.645 ± 0.045 0.378 ± 0.031 -0.048 ± 0.033 $\Lambda_b \rightarrow \Lambda$ SM (1.037 ± 0.759) 0.385 ± 0.033 $\Lambda_b \rightarrow$ SM (1.798 ± 0.133) 0.472 ± 0.028		

Table 2: $\Lambda_b \to (\Lambda^* (\to pK^-)) \mu^+ \mu^- \text{ and } \Lambda_b \to (\Lambda^* (\to pK^-), \Lambda (\to p\pi)) \nu \bar{\nu} \text{ decay within the SM and 2D}$ NP scenario.

	$\Lambda_b \to \Lambda(\to p\pi)\mu^+\mu^-$			
Observables		SM	(
$BR \times 10^{-7}$	[0.1 - 6.0]	1.210 ± 0.181	0.9	
	[14.2 - 20.83]	4.208 ± 0.263	2.2	
F_L	[0.1 - 6.0]	0.759 ± 0.040	0.6	
	[14.2 - 20.83]	0.355 ± 0.013	0.3	
A_{FB}	[0.1 - 6.0]	-0.040 ± 0.027	0.0	
	[14.2 - 20.83]	-0.317 ± 0.012	0.0	

Table 3: $\Lambda_b \to (\Lambda(\to p\pi))\mu^+\mu^-$ decay within the SM and 2D NP scenario. • BR of $\Lambda_b \to \Lambda^* (\to pK^-) \mu^+ \mu^-$ and $\Lambda_b \to \Lambda (\to p\pi) \mu^+ \mu^-$ is found to be in the $\mathcal{O}(10^{-9})$ and $\mathcal{O}(10^{-7})$.

