

Motivation

- Monte-Carlo event generator: provides exclusive simulated data! • **SM NLO corrections:** increased precision of theoretical predictions \Rightarrow higher sensitivity to new physics
 - QCD corrections most relevant for hadron collider processes
 - Even though $\alpha \sim \alpha_s^2$, EW corrections relevant at hadron colliders (e. g. large EW Sudakov factors) and highly relevant at lepton colliders
- Automation: flexibly use precise predictions for all collider processes

Overview: Automated NLO corrections in WHIZARD

https://whizard.hepforge.org WHIZARD team: Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter, Pia Bredt, Nils Kreher, Pascal Stienemeier, Tobias Strieg

contact: https://launchpad.net/whizard (support), whizard@desy.de (email)

- WHIZARD [1] is a multi-purpose event generator for multi-particle scattering cross sections and simulated event samples for **lepton and hadron collider** processes covering **SM** and **BSM** physics
- tree level matrix elements O'Mega[2], phase space evaluation VAMP2[3]
- NLO matrix elements from one-loop providers: **OpenLoops**[4], **RECOLA**[5], ...
- Regularisation of infrared singularities based on **FKS subtraction** scheme \Rightarrow NLO QCD, EW and mixed corrections
- Matching to parton showers with POWHEG scheme \Rightarrow QCD corrections

NLO EW corrections to cross sections of LHC processes

WHIZARD+OpenLoops NLO EW cross sections of pp processes with

- ... on-shell bosons VV, VH, VVV and VVH validated with MUNICH+OpenLoops[6]
- ... off-shell vector bosons (+ associated Higgs) validated with $MG5_aMC@NL0[7]:$ $\sqrt{s} = 13 \text{ TeV}$ $\mu_R = \mu_F = \frac{H_T}{2} = \frac{1}{2} \sum_i \sqrt{p_{T,i}^2 + m_i^2}$ α input scheme: G_μ CMS

process	$ \alpha^n$	MG5 aMC@NLO $\sigma_{\rm NUO}^{\rm tot}$ [pb]	WHIZARD $\sigma_{\rm NUO}^{\rm tot}$ [pb]	δ [%]	$\sigma_{10}^{\rm sig}$	6
$pp \rightarrow$			+OpenLoops		LU	
$e^+ u_e$	α^2	5200.5(8)	5199.4(4)	-0.73	0.81	
e^+e^-	α^2	749.8(1)	749.8(1)	-0.50	0.08	0
$e^+ u_e\mu^-ar u_\mu$	α^4	0.52794(9)	0.52816(9)	+3.69	1.27	
$e^+e^-\mu^+\mu^-$	α^4	0.012083(3)	0.012078(3)	-5.25	0.68	
$He^+\nu_e$	α^3	0.064740(17)	0.064763(6)	-4.04	0.06	
He^+e^-	α^3	0.013699(2)	0.013699(1)	-5.86	0.03	
Hjj	α^3	2.7058(4)	2.7056(6)	-4.23	0.67	
tj	α^2	105.40(1)	105.38(1)	-0.72	0.20	
	($\delta \equiv \frac{\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}}{\sigma_{\rm LO}^{\rm tot}} \qquad \sigma^{\rm si}$	$\sigma^{\mathrm{g}} \equiv rac{ \sigma^{\mathrm{tot}}_{\mathrm{WHIZARD}} - \sigma^{\mathrm{tot}}_{\mathrm{MG}} }{\sqrt{\Delta^{2}_{\mathrm{err,WHIZARD}} + \Delta^{2}}}$	t 2 err,MG5		

Automated NLO SM corrections for all colliders

P. Bredt¹, J. Reuter¹, P. Stienemeier¹

¹Theory Group, Deutsches Elektronen-Synchrotron, Hamburg

NLO EW corrections to differential distributions of LHC processes

Electroweak effects observable in differential distributions as

• ... for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$ at NLO EW:

NLO SM mixed corrections at the LHC

- Except for the leading α_s and α NLO contributions, subtraction of both, QCD and QED IR singularities in one NLO contribution at fixed couplings
- Validation of all leading and subleading NLO contributions of $pp \rightarrow t\bar{t}(H/Z/W^{\pm})$ with MUNICH, e.g.

		$\sigma^{ m tot}$ [fb]			rel. deviation
$pp \to t\bar{t}H$	$\alpha_s^m \alpha^n$	MUNICH+OpenLoops	WHIZARD+OpenLoops		
LO_{21}	$\alpha_s^2 \alpha$	$3.44865(1) \cdot 10^2$	$3.4487(1) \cdot 10^2$	0.76	0.003%
LO_{12}	$\alpha_s \alpha^2$	$1.40208(2) \cdot 10^{0}$	$1.4022(1) \cdot 10^{0}$	1.44	0.011%
LO_{03}	α^3	$2.42709(1) \cdot 10^{0}$	$2.4274(2) \cdot 10^{0}$	2.07	0.011%
NLO ₃₁	$\alpha_s^3 \alpha$	$9.9656(4) \cdot 10^1$	$9.968(4) \cdot 10^1$	0.62	0.023%
NLO_{22}	$\alpha_s^2 \alpha^2$	$6.209(1) \cdot 10^0$	$6.208(2) \cdot 10^0$	0.20	0.009%
NLO_{13}	$\alpha_s \alpha^3$	$1.7238(2) \cdot 10^{0}$	$1.7232(5) \cdot 10^{0}$	1.24	0.040%
NLO_{04}	α^4	$1.5053(3) \cdot 10^{-1}$	$1.5060(7) \cdot 10^{-1}$	1.00	0.048%

 Non-trivial cut evaluation including photon recombination and jet clustering for processes with jets and leptons in the FS, e. g. $pp \rightarrow e^+ \nu_e j, e^+ e^- j$:

process	$\alpha_s^m \alpha^n$	MG5_aMC@NLO $\sigma_{ m NLO}^{ m tot}$ [pb]	WHIZARD $\sigma_{ m NLO}^{ m tot}$ [pb]	δ [%]	$\sigma_{ m LO}^{ m sig}$	$\sigma_{ m NLO}^{ m sig}$
$pp \rightarrow$			+OpenLoops			
$e^+\nu_e j$	$\alpha_s \alpha^2$	$9.0475(8) \cdot 10^5$	$9.0459(7) \cdot 10^5$	-1.11	0.8	1.5
e^+e^-j	$\alpha_s \alpha^2$	$1.4909(2) \cdot 10^5$	$1.4908(2) \cdot 10^5$	-1.00	0.05	0.4

- $\sigma_{
 m NLO}^{
 m sig}$
- 1.24
- .004 1.69
- 1.261.24
- 0.32 0.27
- 0.74

DESY

Lepton collider processes at NLO EW

Fixed order computations with massive initial state

- FKS phase space construction with on-shell projection

	MCSAN	Cee [8]	WHIZARD+RECOLA			
$\sqrt{s} \; [{\rm GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\sigma_{ m LO}^{ m tot}$ [fb]	$\sigma_{ m NLO}^{ m tot}$ [fb]	δ_{EW} [%]	$\sigma^{ m sig}$ (LO/NLO)
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5

Approximation of the massless initial state

- and NLL electron PDFs implemented and validated
- Embedding into FKS scheme work in progress

POWHEG-matched and showered NLO event generation

- M. Moretti, T. Ohl, and J. Reuter pp. 1981--2009, 2 2001. [2]
- F. Buccioni et. al. Eur. Phys. J. C, vol. 79, no. 10, p. 866, 2019. [4]
- S. Kallweit et. al. JHEP, vol. 04, p. 012, 2015. [6]
- R. Frederixi et. al. JHEP, vol. 07, p. 185, 2018. [7]
- [8]
- S. Alioli et. al. JHEP, vol. 07, p. 060, 2008. 9
- [10] T. Sjöstrand et. al. Comput. Phys. Commun., vol. 191, pp. 159--177, 2015.

• Checks on $e^+e^- \rightarrow HZ$ cross sections at NLO EW for ILC setup:

Collinear factorization and resummation of large logarithms in the form of LL

POWHEG matching for Drell-Yan and similar processes validated

• Comparison of p_{T,e^-} , $m_{e^+e^-}$ and y_{e^-} distributions for $pp \to e^+e^-$ with matched events from WHIZARD and POWHEG-BOX[9] and showered with PYTHIA[10]:

References

W. Kilian, T. Ohl, and J. Reuter *Eur. Phys. J.*, vol. C71, p. 1742, 2011. S. Brass, W. Kilian, and J. Reuter Eur. Phys. J. C, vol. 79, no. 4, p. 344, 2019. [5] S. Actis, A. Denner, L. Hofer, A. Scharf, and S. Uccirati JHEP, vol. 04, p. 037, 2013. R. R. Sadykov et. al. J. Phys. Conf. Ser., vol. 1525, no. 1, p. 012012, 2020.