Quantum clustering and jet reconstruction at the LHC J

Jorge J. Martinez de Lejarza
Jorge.M.LejarzaQific.uv.es

Based on: J. J. M. de Lejarza, L. Cieri and G. Rodrigo, arxiv:2204.06496
IFIC-Universitat de Valéncia/CSIC

9th July 2022, International Conference on High Energy Physics

CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

VNIVERSITAT
DGVALENCIA

Jorge J. Martinez de Lejarza (IFIC-UV) Quantum jet reconstruction 9th July 2022, ICHEP 1/24


https://arxiv.org/abs/2204.06496

N
Outline

© Motivation

e Quantum algorithms
@ Quantum subroutine to compute a Minkowski-type distance
@ Quantum maximum search by amplitude encoding

© Quantum clustering algorithms
@ Quantum K-means
@ Quantum Affinity Propagation
@ Quantum kt jet algorithm

@ Conclusions

Jorge J. Martinez de Lejarza (IFIC-UV) Quantum jet reconstruction 9th July 2022, ICHEP 2/24



Outline

© Motivation

J. Martinez de Lejarza (IFI

Quantum jet reconstruction 9th July 2022, ICHEP 3/24




Motivation

Current status of jet clustering in High Energy Physics

Situation

@ Analysing HEP collisions — one of the
most computationally demanding activities

@ lIdentifying jets formed — daunting task
which consumes a great deal of
resources— ML and Classical algorithms

o Difficulty is expected to increase —> with
the High Luminosity LHC (HL-LHC)

Jorge J. Martinez de Lejarza (IFIC-UV) Quantum jet reconstruction 9th July 2022, ICHEP 4/24



Motivation

Current status of jet clustering in High Energy Physics

Situation Possible solution

@ Analysing HEP collisions — one of the
most computationally demanding activities

@ lIdentifying jets formed — daunting task
which consumes a great deal of
resources— ML and Classical algorithms

o Difficulty is expected to increase —> with
the High Luminosity LHC (HL-LHC)

@ What if we might speed up
jet clustering algorithms
using:

Quantum Computing?
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e Quantum algorithms
@ Quantum subroutine to compute a Minkowski-type distance
@ Quantum maximum search by amplitude encoding
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance
@ For computing the quantum Euclidean distance between two d-dimensional
vectors X;, Xo, classical information must be encoded:

d
;) =[x ZXW 1) i=1,2

pn=1
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Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach

Euclidean distance

@ For computing the quantum Euclidean distance between two d-dimensional
vectors X;, Xo, classical information must be encoded:

d
-1
x;) = [xi] ZXW 1)

@ Then, we can use the following quantum circuit:

pn=1

i=12

0 H#]

72
L]

1)

|1)2)

SwapTest

[~

Buhrman,Cleve,Watrous,de Wolf (2001)
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

@ Where define the following states:

1

(10, x1) + [1,x2)) l¢p2) = 7 (Ixa[10) = Ix2[[1))

1) = \7

1
lth1) = ﬁ (%, 0) + [x2, 1)), VAVES |X1|2 + |X2|2

@ We can compute:

(1112 (Waltn) = 53— X1 — %o

Jorge J. Martinez de Lejarza (IFIC-UV) Quantum jet reconstruction 9th July 2022, ICHEP 7/24



Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

Flow chart:
1. Initialization:

[Wo) = 10) ® |¥1) ® |4hy) = [0, %1, 45)
2. Applying Hadamard gate H:

W) = (H@ 1m0 [wy) = — (\o Y1) + |1, 1, 462)

g

3. Applying the CSWAP gate:
[W;) = CSWAP|V,) = (\0 i, ) + |1, 9, 41))
4. Applying Hadamard gate H:

W3 = (H@ 1571) [Wa) = 2 (10) ([, ) + oo, 1)) + 11) (19, 82) — bz, 91))

5. Measurement:

iy

Puy(10)) = 1(O1V)F = 3 + 3 (1o} (ol
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

@ Once the probability Py, (]0)) has been estimated, we can combine:

(¥1lv2) (Waly) = ﬁb‘l - x|

Pu,(10)) = [{0|W3)[?

L L0t aha) (W iy)
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Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

@ Once the probability Py, (]0)) has been estimated, we can combine:

(¥1lv2) (Waly) = ﬁb‘l - x|

)

dE? (1, %) = 1/2Z10(2Pu, (10)) — 1)

Pu,(10)) = [{O1W3)[* = 5 + J (1 [4) (Waltin)
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Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

@ Once the probability Py, (]0)) has been estimated, we can combine:

(¥1lv2) (Waly) = ﬁb‘l - x|

)

dE? (1, %) = 1/2Z10(2Pu, (10)) — 1)

Pu,(10)) = [{O1W3)[* = 5 + J (1 [4) (Waltin)

Could this
provide a
speed-up?
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Previous approach Euclidean distance

@ Once the probability Py, (]0)) has been estimated, we can combine:

(¥1lv2) (Waly) = ﬁb‘l - x|

)

dE? (1, %) = 1/2Z10(2Pu, (10)) — 1)

Pu,(10)) = [{O1W3)[* = 5 + J (1 [4) (Waltin)

Could this
provide a
speed-up?

Classical computation: O(d)
Quantum computation: O(logd)
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Our approach Invariant sum squared JML, Cieri, Rodrigo (2022)

@ The invariant sum squared (a.k.a invariant mass squared) is
2 2
s12 = (Xo,1 + X%0,2)" — [x1 + X

@ We have to use the SwapTest twice (spatial and temporal part):

Spatial part Temporal part
) lp1) = H|0> 7 (10)+11))
[tha) — b)) = 7 (1x1[]0)+[x2[[1)) lp2) —2\7 (%0.110) + x0,2/1))
O =

X 1 +Xo,2

Jorge J. Martinez de Lejarza (IFIC-UV) Quantum jet reconstruction 9th July 2022, ICHEP 10/24


https://arxiv.org/abs/2204.06496

(CNEWITNIEIECIGUTIEEN  Quantum subroutine to compute a Minkowski-type distance

Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance
Our approach Invariant sum squared JML, Cieri, Rodrigo (2022)
@ The invariant sum squared (a.k.a invariant mass squared) is

2 2
s1i2 = (%01 +X0,2)" — [X1 + X2

@ We have to use the SwapTest twice (spatial and temporal part):

Spatial part Temporal part

) |s01> H|0) = 7 (|0) + 1))

1
= = —= 0) + xp.2]1

[42) — ) = 5= (al0)+ el 1) #2) = 7, (20a10) 0211)

Zy=Xo1+ X2
x; + X2\2 = 2212(2PW3(|0>|5patial) -1) (X0,1 + Xo,z) = (2P\U3(|0>|time) -1)
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Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance
Our approach Invariant sum squared JML, Cieri, Rodrigo (2022)
@ The invariant sum squared (a.k.a invariant mass squared) is

2 2
si2 = (X1 + X0,2)" — |x1 + Xo|

@ We have to use the SwapTest twice (spatial and temporal part):

Spatial part Temporal part
) |s01> H|0) = 7 (|0) + 1))
_ _ 1 0 + 1
[V2) — [1b2) 7\/2712 (|x1]]0)+|x2|1)) ©2) VA (2 0,110) + X0.2] >)
Zy=Xo1+ X2
x; + X2\2 = 2212(2P\|J3(|0>|5patial) -1) (X0,1 + Xo,z) = (2P\U3(|0>|time) -1)

st = 2(Z5(2Py, (10} |sime) — 1) = Z12(2Pu, (|0} spariar) — 1))
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Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Our approach

@ The general quantum circuit to compute the invariant sum squared is:

0) —{H} TL (7 —~]
g(d—1)

Spatial

Temporal

Invariant sum squared

lo,
/

|¢1> 7

|th2)

0 —{@])

i ——~]

1)

|2)
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Quantum subroutine to compute a Minkowski-type distance

Our approach Invariant sum squared JML, Cieri, Rodrigo (2022)

@ The general quantum circuit to compute the invariant sum squared is:

o i~
g(611)>[<

lo,
/

Spatial |w1> 7

|th2)

o i

Temporal |(pl>

|2)
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Quantum subroutine to compute a Minkowski-type distance
Quantum Algorithms

Quantum subroutine to compute a Minkowski-type distance

Our approach

Invariant sum squared  mL Ciri, Rodrigo (2022)

@ The general quantum circuit to compute the invariant sum squared is:

Spatial

Temporal

lo,
/

|¢1> 7
[¥h2)

o i~
g(611)>[<

0 —{F—

i ——~]

1)

Classical : O(d)
Quantum: O(log(d — 1))

|2)

|
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Quantum Algorithms

Quantum maximum search by amplitude encoding JML, Cieri, Rodrigo (2022)

Let L[0,..., N — 1] be an unsorted list of N items. The quantum algorithm to
find the maximum using amplitude encoding proceeds in two steps:

@ The list of N elements is encoded into a log,(/N) qubits state as follows:

V) = LL/] e

TH
c
M

-,
Il
o

where L, = ZJ 0 L L[j]? is a normalization constant.

@ The final state is measured. This step is rerun several times to reduce the

statistical uncertainty. Once done, the most repeated state gives us the
maximum.
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Quantum Algorithms

Quantum maximum search by amplitude encoding

JML, Cieri, Rodrigo (2022)

@ The quantum circuit of this procedure is:

0) —

QRAM

| ENCODING

=) —

— 0)

=]
il

— I

— |n—1)

— [n)

meas:
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Quantum Algorithms

Quantum maximum search by amplitude encoding

JML, Cieri, Rodrigo (2022)

@ The quantum circuit of this procedure is:

0) —

QRAM

| ENCODING

=) —

— 0)

=]
il

— I

— |n—1)

— [n)

meas:

Speed up?
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Quantum Algorithms

Quantum maximum search by amplitude encoding JML, Cieri, Rodrigo (2022)

@ The quantum circuit of this procedure is:

o) — — — 10 {1

10) — — — [

QRAM

| ENCODING )=

[0) — — — |n—1) %

10) — — — In) %k

meas:

Classical : O(N)

>
Slpeee] 1 Quantum: O(log )
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© Quantum clustering algorithms
@ Quantum K-means
@ Quantum Affinity Propagation
@ Quantum ky jet algorithm
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Quantum clustering algorithms

Quantum K-means

MacQueen (1967)

e® A o ° ®
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e A0® o °
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e 120 0%, &3
° e o o é e
(©) ()
1. Randomly generate K ini- 2. Assign every point (repre- 3. Recalculate the new K 4. Repeat steps 2 and 3 until
tial centroids within the data  sented by circles) to the cor-  centroids by computing the centroids stabilize, and con-
domain (here K=4, repre- responding nearest centroid  mean of each cluster of vergence has been reached.
sented by triangles). (assignment represented points.

through colors).

Pires, Bargassa, Seixas, Omar (2021)
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Quantum clustering algorithms

Quantum K-means

K-means workflow MacQueen (1967)
e® A o ® ®
(Y ] [
e A0® o ®
A
@ @
S A _s 68
@ e o ()
(©) ()
1. Randomly generate Kini- 2. Assign every point (repre- 3. Recalculate the new K 4. Repeat steps 2 and 3 until
tial centroids within the data  sented by circles) to the cor-  centroids by computing the centroids stabilize, and con-
domain (here K=4, repre- responding nearest centroid  mean of each cluster of vergence has been reached.
sented by triangles). (assignment represented points.

through colors).

Pires, Bargassa, Seixas, Omar (2021)
@ Step 2 includes two procedures that might be speed up ML, Cieri, Rodrigo (2022)
o Computing the distances — Quantum invariant sum squared —
From O(d) to O(log(d — 1))
@ Assigning the nearest centroid (obtaining a minimum) — Quantum maximum
search — From O(K) to O(log K)
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Quantum clustering algorithms

Quantum K-means

K-means workflow MacQueen (1967)
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1. Randomly generate K ini-
tial centroids within the data
domain (here K=4, repre-
sented by triangles).

2. Assign every point (repre-
sented by circles) to the cor-

responding nearest centroid
(assignment represented

3. Recalculate the new K
centroids by computing the
mean of each cluster of
points.

4. Repeat steps 2 and 3 until
centroids stabilize, and con-
vergence has been reached.

through colors).

Pires, Bargassa, Seixas, Omar (2021)

@ Step 2 includes two procedures that might be speed up
o Computing the distances — Quantum invariant sum squared —

From O(d) to O(log(d — 1))
@ Assigning the nearest centroid (obtaining a minimum) — Quantum maximum
search — From O(K) to O(log K)

JML, Cieri, Rodrigo (2022)

Classical: O(NKd)
Quantum: O(N log K log(d — 1))

The total
speed-up
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Quantum clustering algorithms

Quantum K-means

JML, Cieri, Rodrigo (2022)

@ LHC simulated-data:

Classical K-means

Ec =

Jorge J. Martinez de Lejarza (IFIC-UV)

K-means quantum simulations
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Quantum K-means, ¢, = 0.94

# part. classified as the classical algorithm

# part. in total
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Quantum clustering algorithms
Quantum Affinity Propagation

Affinity Propagation algorithm Frey, Dueck (2007)
@ Main ideas:

o Does not need the number of clusters to be defined beforehand
o Consider all data points as exemplars — they are reduced until reaching the
optimal number
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Quantum clustering algorithms
Quantum Affinity Propagation

Affinity Propagation algorithm Frey, Dueck (2007)
@ Main ideas:

e Does not need the number of clusters to be defined beforehand
o Consider all data points as exemplars — they are reduced until reaching the
optimal number
Most cases: Euclidean distance

@ Input — similarity matrix — metric .
Our case: Invariant sum squared
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Quantum clustering algorithms
Quantum Affinity Propagation

Affinity Propagation algorithm Frey, Dueck (2007)
@ Main ideas:

o Does not need the number of clusters to be defined beforehand
o Consider all data points as exemplars — they are reduced until reaching the
optimal number

s . . | Most cases: Euclidean distance
@ Input — similarity matrix — metric .
Our case: Invariant sum squared

@ Quantum advantage? — computing Quantum invariant sum squared —>

From O(d) to O(log(d = 1)) JML, Cieri, Rodrigo (2022)
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Quantum clustering algorithms
Quantum Affinity Propagation

Affinity Propagation algorithm Frey, Dueck (2007)
@ Main ideas:

o Does not need the number of clusters to be defined beforehand
o Consider all data points as exemplars — they are reduced until reaching the
optimal number

s . . | Most cases: Euclidean distance
@ Input — similarity matrix — metric .
Our case: Invariant sum squared

@ Quantum advantage? — computing Quantum invariant sum squared —>

From O(d) to O(log(d = 1)) JML, Cieri, Rodrigo (2022)

The total Classical: O(N*Td)
speed-up Quantum: O(N° T log(d —1))
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Quantum clustering algorithms
Quantum Affinity propagation

JML, Cieri, Rodrigo (2022) Affinity Propagation quantum simulations

@ [ HC simulated-data:

~ 1750
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~1250 S
&
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9
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Quantum Affinity Propagation, e. = 1.00

Classical Affinity Propagation
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Quantum clustering algorithms
Quantum Affinity propagation

JmL, Cieri, Rodrigo (2022) Affinity Propagation quantum simulations
@ LHC simulated-data:
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Quantum clustering algorithms

Quantum k7 jet algorithm

Catani, Dokshitzer, Olsson, Turnock, Webber (1991)
Cacciari, Salam, Soyez (2008)

kt jet algorithm
Qo e For each pair of partons i, j compute:

d; = min(p¥,, p¥,)AR;/R?, with ARS = (v; — y;)* + (¢ — ¢;)°

where pr;, y; and ¢; are the transverse momentum (with respect to the beam
direction), rapidity and azimuth of particle i.
o For each particle i the beam distance is d;g = p2TPJ.
e Find dmin amongst d’J’ diB'
o If dj;, the particles / and j are merged
e If d;g, declare i as a final jet and remove it from the list of particles

© Repeat from step 1 until no particles left.
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Quantum clustering algorithms

Quantum k7 jet algorithm

Catani, Dokshitzer, Olsson, Turnock, Webber (1991)
Cacciari, Salam, Soyez (2008)

kt jet algorithm
Qo e For each pair of partons i, j compute:

d; = min(p¥,, p¥,)AR;/R?, with ARS = (v; — y;)* + (¢ — ¢;)°

where pr;, y; and ¢; are the transverse momentum (with respect to the beam
direction), rapidity and azimuth of particle i.
o For each particle i the beam distance is d;g = p2T‘fi.
e Find dmin amongst d’J’ diB'
o If dj;, the particles / and j are merged
e If d;g, declare i as a final jet and remove it from the list of particles

© Repeat from step 1 until no particles left.
@ Step 2 includes finding a minimum in a list of order N — Quantum
maximum search — From O(N) to O(log N) JML, Cieri, Rodrigo (2022)
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Quantum clustering algorithms

Quantum k7 jet algorithm

Catani, Dokshitzer, Olsson, Turnock, Webber (1991)
Cacciari, Salam, Soyez (2008)

kt jet algorithm
Qo e For each pair of partons i, j compute:

d; = min(p¥,, p¥,)AR;/R?, with ARS = (v; — y;)* + (¢ — ¢;)°

where pr;, y; and ¢; are the transverse momentum (with respect to the beam
direction), rapidity and azimuth of particle i.
o For each particle i the beam distance is d;g = p2T‘fi.
e Find dmin amongst d’J’ diB'
o If dj;, the particles / and j are merged
e If d;g, declare i as a final jet and remove it from the list of particles

© Repeat from step 1 until no particles left.
@ Step 2 includes finding a minimum in a list of order N — Quantum
maximum search — From O(N) to O(log N) IML, Cieri, Rodrigo (2022)

The total Classical: O(N?)
speed-up Quantum: O(N log N)
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Quantum clustering algorithms

Quantum k7 jet algorithm

JML, Cieri, Rodrigo 2022)  k-jet algorithm quantum simulations

® | HC simulated-data, p =1, kt:

~ 1750 ~ 1750
= 1500 = 1500

~1250 S

3

~1000 &

o &

Classical kr, R=1 Quantum kr, R=1,¢.=0.98
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® | HC simulated-data, p = —1, anti-kt:
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ML, Cieri, Rodrigo 2022) - k-jet algorithm quantum simulations

® LHC simulated-data, p = 0, Cam/Aachen:

Classical Cam/Aachen, R =1 Quantum Cam/Aachen, R =1, ¢. = 0.98
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Conclusions

Conclusions

Quantum computing to speed-up jet clustering algorithms

Two procedures:

o Quantum distance — invariant sum (mass) squared — by SwapTest
e Quantum maximum search — by Amplitude Encoding

@ Proven achievements in LHC simulated data:

e Quantum algorithms as good as classical

@ When QRAM devices exist one would obtain
o Quantum K-means — From O(NKd) to O(N log K log(d — 1))
o Quantum Affinity Propagation — From O(N?Td) to O(N*T log(d — 1))
o Quantum ky —s From O(N2) to O(Nlog N) (without Voronoi diagrams)
From O(Nlog N) to O(Nlog N) (with Voronoi diagrams)
o What if QRAM never exists — other data loading methods

o Cut-off of Grover-Rudolph From O(2") to O(20())  Warin, Gonzatez-Conde, Sanz (2021)

° qGANS From 0(217) to O(poly(n))) Zoufal, Lucchi, Woerner (2019)
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Thank you for
your attention!!
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o Data generation

. Massive
o C + + code based on ROOT — generates n-particle events
Massless

Precision —» 1072
Proton-proton s = v/14TeV
pr > 10 GeV

n = 128 massless particles
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o Efficiencies w.r.t the number of shots:

a
(47)
a | Efficiency Shots Efficiency Shots kr Efficiency Shots
anti-kp anti-kp kr Cam/Aachen | Cam/Aachen
1 0.96 50 0.98 50 0.96 70
2 0.99 40 0.99 45 0.98 60
3 1.00 25 0.98 20 0.97 40
4 1.00 15 0.95 15 1.00 20
5 0.99 5 1.00 8 0.98 10

Jorge J. Martinez de Lejarza (IFIC-UV)

Quantum jet reconstruction
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@ How have we loaded the state in our quantum simulations?
-We have used the Grover-Rudolph algorithm:

0) 4‘ U(0o,1)

[0) —U(611)
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o) {0, 0 |e : :
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o Gates time execution/propagation delay in "early stages”

o Classical gates propagation delay ~ 100ns (1980s)
e Quantum gates time execution ~ 100 ns (IBMQ Melbourne) for CNOTs
(2022)

o Gates time execution/propagation delay when tech is consolidated

o Classical gates propagation delay ~ 100ps (2022)
o Quantum gates time execution 777 (2060s)
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@ Quantum maximum search algorithm:

0470 0.032
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Real distances to be analysed Random distribution from (1,1000)
N = 8201 , 14 qubits, 1000 shots N =100, 7 qubits, 1000 shots
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Failing in obtaining the minimum

@ Failing in getting the closest centroid

e The particle is assigned to other cluster (not the nearest centroid)
e This problem will be solved with more iterations — it will finally converge

@ Failing in getting the smallest distance

e Flip in the order in which two particles merge
o The final result will in many cases be independent of this permutation
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Voronoi diagrams

@ As a simple illustration, consider a group of shops in a city. Suppose we want
to estimate the number of customers of a given shop.

o With all else being equal (price, products, quality of service, etc)

o Reasonable to assume that customers choose their preferred shop simply by
distance considerations

e The Voronoi cell R, of a given shop P, can be used for giving a rough
estimate on the number of potential customers going to this shop
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Usefulness of K-means and Affinity Propagation

@ Both use invariant mass squared s;, as a metric —> Lorentz Invariant
quantity — does not change from one inertial frame to another.

@ K-means:

Jorge J. Martinez de Lejarza (IFIC-UV)

Chekanov 2006

Leads to 25% and 40%
improvement of the top-quark and
W mass resolution, respectively,
compared to the kt algorithm.
Nevertheless it is 3 times slower.

Thaler, Van Tilburg (2011)

Stewart, Tackmann, Thaler, Vermillion, Wilkason (2016)

o Affinity Propagation:

Quantum jet reconstruction

Leone, Sumedha, Weigt (2007))
Biological application — cancer
datasets

Bailly-Bechet et al. (2009)

Biological /medical datasets
Gonzélez-Martin et al. (2017)

Astrophysical datasets

Not been applied yet in HEP
— computationally demanding.
On the other hand, it could
overcome K-means — does not
need the number of clusters to be
pre-defined.

9th July 2022, ICHEP 10 /10


https://arxiv.org/abs/hep-ph/0512027
https://arxiv.org/abs/1108.2701
https://arxiv.org/abs/1508.01516
https://arxiv.org/abs/0705.2646
https://arxiv.org/abs/0910.0767
https://arxiv.org/abs/1704.06739

	Motivation
	Quantum algorithms
	Quantum subroutine to compute a Minkowski-type distance
	Quantum maximum search by amplitude encoding

	Quantum clustering algorithms
	Quantum K-means
	Quantum Affinity Propagation
	Quantum kT jet algorithm

	Conclusions
	Appendix

