Identification of Beam Particles Using Detectors based on Cerenkov effect and Machine Learning in the COMPASS Experiment at CERN

František Voldřich

Marcin Stolarski (LIP), Martin Zemko (CTU), Flavio Tosello (INFN), Josef Nový (CTU), Miroslav Virius (CTU)

8.7.2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

COMPASS

- COMPASS = Common Muon Proton Apparatus for Structure and Spectroscopy
- Experiment with fixed target on the SPS accelerator
- Study of hadron structure and spectroscopy using high intensity muon and hadron beams

COMPASS spectrometer (Drell-Yan setup) [3].

COMPASS

 Since 2012 (COMPASS II phase), the main focus is on the Deeply Virtual Compton scattering, Hard Exclusive Meson Production, Semi-inclusive Deeply Inelastic Scattering, polarized Drell-Yan processes and Primakoff reactions

 In 2023
 COMPASS should be replaced by AMBER = Apparatus for Meson and Baryon Experimental Research

COMPASS air view [4]. 2 . 2 . 2 . 3 . 2 . 3 . 2 . 3 . 20

CEDAR detectors

- CErenkov Differential counters with Achromatic Ring focus
- Use Cherenkov radiation for particle identification $(\pi^-, \kappa^-, \bar{p})$
- Cherenkov photons are detected by 8 photomultipliers
- 2 alike detectors positioned upstream the target

CEDAR detectors

- Designed as majority counter, where for highly parallel beam
 6-8 PMT should fire to positively identify a particle
- Not all beam particles traverse the CEDAR detectors parallel to their optical axis
- A likelihood ansatz was developed to account for this issue
- Response of each PMT parameterized individually as a function of radiation angle

Beam parallel to optical axis [2] Beam with finite inclination [2]

・ロト ・ 日 ト ・ ヨ ト ・

CEDAR response for pions - MC

Amount of light collected by the 1st, 2nd, ..., 8th PMT as a function of dx and dy for pions.

CEDAR response for kaons - MC

Amount of light collected by the 1st, 2nd, ..., 8th PMT as a function of dx and dy for kaons.

Challenges with the 2018 data taking

- \blacksquare Beam composition: 97 % π^- , **2,5 %** K^- and < 1 % $ar{
 ho}$
- Beam divergence up to 300 μrad with only 10-15 % events within the designed range below 65 μrad

2008 data taking

- Low intensity beam → no correlated events
- \blacksquare Very precise SI trackers \longrightarrow precise knowledge of beam angle

2018 data taking

- 15 times higher beam intensity → correlated events
- SI trackers replaced by FI detectors → lower angle measurement precision

- The likelihood method cannot be used for the 2018 data taking and the AMBER experiment
- New approach using artificial neural networks (NNs) was proposed
- 3 methods were evaluated:
 - 1 NN as a direct binary classifier classify the particle type
 - 2 NN as a PMTs response predictor predict the likelihood of a certain PMTs reponse assuming the particle type
 - 3 NN as a CEDAR response predictor predict the likelihood of a specific PMTs pattern assuming the particle type

Methods comparison

Method 2: less efficient, likely because it assumes no correlation between the PMTs

ROC plots, logscale Method 1 and 10^{5} meth1, meth3 3 perform meth2 similarly, but 3ackground reduction factor 10^{4} method 1 is 10³ faster and easier to work 10² with \longrightarrow used 10^{1} for further analysis 10^{0} 0.2 0.4 0.6 0.8 0.0 1.0 Efficiency

ROC curves of the new methods.

- Multi Layer Perceptron, Radial Basis Function and Random Vector Functional Network NNs were implemented and evaluated using k-fold cross validation —> MLP performed the best
- A differential evolution heuristic was used for optimization of the network's meta parameters (number of hidden layers, drop layers, activation functions, learning rate, etc.)
- Results imply the task is insensitive to network structure and its meta parameters, probably due to small input layer

Training dataset size

- Size of the dataset needed for successful training was determined
- Improvements obtained by enlarging the training dataset appear to be significant to around 300k events, i.e. \approx 7.5k kaons

Figure: Values of loss functions and ROC curves of different dataset sizes (divided by curve of the largest dataset) used for training.

Using Frugally-deep library

- Model trained in Python with TensorFlow and Keras is exported to binary file
- Binary file is loaded in C++ program
- Inference can be performed with no dependency on Python Interpreter
- Model is integrated to PHAST an open source C++ framework for physics analysis used at COMPASS

Classification quality

	predicted 0	predicted 1
actual O	4 819 955	19 124
actual 1	60 667	60 666

Table: Confusion matrix for 50 % working point.

Sensitivity	0.5000
Specificity	0.9961
Accuracy	0.9839
Background reduction	253.04

Table: Some statistics for 50 % working point.

An improvement is possible for the future AMBER Drell-Yan expriment \longrightarrow identification of the effects aggravating separation is necessary $_$,

Possible improvements for AMBER

- \blacksquare In 2008, the background reduction factor at 90 % efficiency was ${\approx}1000$
- 4 issues needed to be taken into account in Monte Carlo simulations:
 - **1** MC-1xxx: additional undetected track (correlated noise)
 - 2 MC-x1xx: additional random noise
 - 3 MC-xx1x: PMTs inefficiency
 - 4 MC-xxx1: angle smearing
- Combinations of different effects were examined to identify the main factors complicating separation

Possible improvements for AMBER

The biggest improvements achievable by removing 1, 2, 3 and all problems.

Further achievable improvements for AMBER

- Each PMT consist of 4 pads responding individually
- The time of the hit of individual pads can be used to discard signal caused by an undetected track
- Replacing binary response of PMTs with number of active pads improves the separation almost as much as removing correlated noise

Figure: Using number of active pads.

- To improve angle measurement precision → replace Fl detectors with radiation hard Sl trackers
- To reduce correlated noise → faster electronic (presently the signal length is 10ns, but can be reduced to 2ns)
- To reduce uncorrelated noise → improve shielding
- To improve efficiency —> enlarge diaphragm opening to allow more photons to reach PMTs (in this moment would also increase correlated noise)

- 3 new methods and tools for their performance analysis were developed → method 1 seems to be the best
- The model was optimized using genetic heuristic —> the problem seems to be insensitive to NNs parameters
- Issues aggravating separation were identified and improvement achievable by resolving them was quantified —> more precise angle measurements offers the most significant improvement
- Further possibilities for improvement were recognized and simulated → using pads, lowering PMTs hit times
- The best model was integrated into physics analysis framework

References

- VOLDŘICH, František. Identification of Beam Particles Using CEDAR Detectors and Machine Learning in the COMPASS Experiment at CERN. Prague, 2022. Diploma thesis. Czech Technical University. Supervisor: Martin Zemko, Consultant: Marcin Stolarski.
- [2] "CEDAR PID using the Likelihood Approach for the Hadron-Beam", COMPASS Note 2017-1, https://www.compass.cern.ch/compass/notes/2017-1/2017-1.pdf
- [3] TOWNSEND, April. Probing transverse-spin-dependent nucleon structure in pion-induced dimuon production at COMPASS: APS April Meeting 2022 [online]. 10.4.2022 [cit. 2022-07]. Available at: https://www.compass.cern.ch/compass/publications/talks/t2022/ APS_April_Meeting_2022_Presentation.pdf
- [4] "The COMPASS setup for physics with hadron beams", COMPASS Coll., NIM A 779 (2015) 69. "The CEDAR counters for particle identification in the SPS secondary beams: a description and an operation manual", C. Bové et al., doi: 10.5170/CERN-1982-013, https://cds.cern.ch/record/142935.