FAIR Principles for data and AI models in HEP Research and Education

Avik Roy

University of Illinois at Urbana-Champaign

on behalf of the FAIR4HEP project

July 9, 2022

The FAIR Principles

To inspire scientific data management for reproducibility and maximal reusability¹

Originally proposed for scientific data

• Can be interpreted as guidelines to manage and preserve other Digital Objects (DOs) e.g. research software², tutorials and notebooks³, AI and ML models⁴

Different working groups working on FAIR guidelines for different DOs (e.g <u>FAIR4RS</u>,

FAIR workflows, FAIR VREs)

Findable: locating DOs in a failsafe fashion

Accessible: obtaining DOs along with their

context, content, and format

Interoperable: being usable across multiple

computing platforms

Reusable: specifying the context and extent

of reusing DOs

FAIR4HEP: FAIR data and AI for HEP

- Multi-disciplinary, multi-institute team for learning how data-intensive HEP research can benefit from FAIR principles and vice versa
- Develop community standards to implement
 FAIR principles and tools to implement them
- Develop and share benchmark FAIR data and models
- Explore interplay between data and models to explore interpretability and model robustness

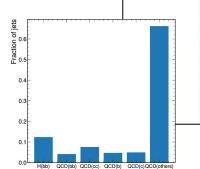
What makes data and AI FAIR for physicists?

How FAIR principles facilitate today's physics research?

Are AI models in HEP robust?

How well do we understand AI models and their relationship with data?

visit us: https://fair4hep.github.io


Exploring the FAIR Principles for datasets in HEP⁵

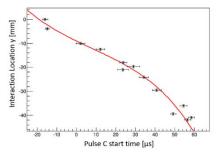
 Explored the FAIR principles for the Hbb tagging dataset⁶ from CMS open data

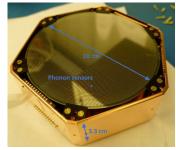
 Demonstrate a domain-agnostic evaluation of FAIR-readiness using community-standard tools

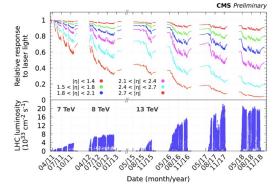
Investigates AI-readiness of the dataset

- Format of the data and its compatibility with popular ML libraries
- Pedagogical examples of AI usage via notebooks⁷

scientific data (A) Check for updates A FAIR and Al-ready Higgs boson ARTICLE decay dataset Yifan Chen 61,2, E. A. Huerta 62,3 M, Javier Duarte 64, Philip Harris5, Daniel S. Katz 61, Mark S. Neubauer 1, Daniel Diaz 1, Farouk Mokhtar 1, Raghav Kansal Sang Eon Park 66, Volodymyr V. Kindratenko 61, Zhizhen Zhao & Roger Rusack 67 To enable the reusability of massive scientific datasets by humans and machines, researchers aim to adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment guide to evaluate whether or not a given dataset meets these principles. We demonstrate how to use this quide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration at the CERN Large Hadron Collider. This dataset consists of Higgs boson decays and quark and gluon background, and is available through the CERN Open Data Portal. We use additional available tools to assess the FAIRness of this dataset, and incorporate feedback from members of the FAIR community to validate our results. This article is accompanied by a Jupyter notebook to visualize and explore this dataset. This study marks the first in a planned series of articles that will guide scientists in the creation of FAIR AI models and datasets in high energy particle physics.

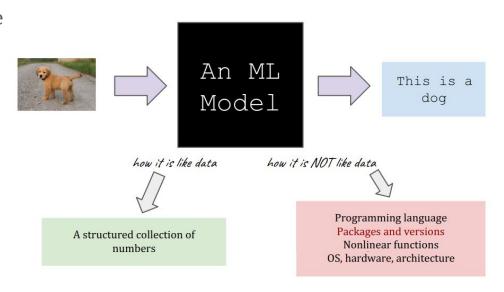

DOI: <u>10.1038/s41597-021-01109-0</u>





FAIR Datasets from the FAIR4HEP Team

- Dataset from Super Cryogenic Dark Matter Search (SuperCDMS) detector prototype⁸
 - Detector operates at 30 mK and collects response to phonon flux via multiple channels
 - Dataset consists of timing information from detector's response to radioactive source excitation
- Laser Response from Electromagnetic Calorimeter
 (ECal) crystals at CMS⁹
 - Includes information about radiation damage to ECal crystals
 - Contains data from ~10k/year calibrations during Run 2

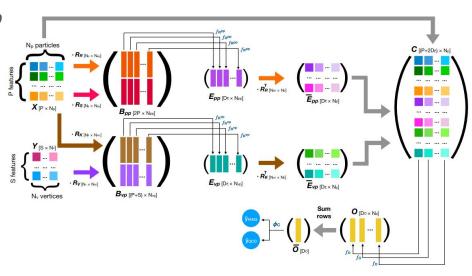


FAIR Principles for AI Models

 Technical: Specific OS/software/package dependencies, availability of dataset and its provenance

Analytical:

- Using model inference for new/curtailed/similar datasets
- Retraining model
- Feature Engineering
- Reoptimizing model hyperparameters

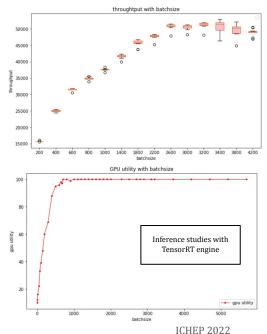


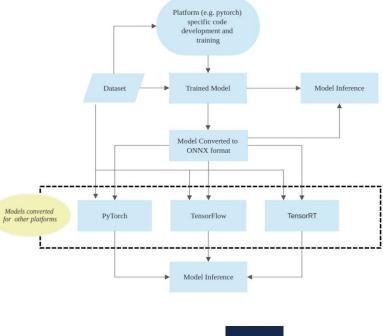
A Benchmark AI Model: The Interaction Network

 State of the art Graph Neural Network (GNN) Model trained to distinguish H→bb jets from QCD background

- Input to the model:
 - o 60 particle tracks, 30 features per track
 - 5 secondary vertices, 14 features per vertex
 - Particle-particle and particle-vertex interaction matrices create an interaction network
 - Three MLP as transformation networks:
 - f_r : particle interaction
 - f_r^{pv} : particle-vertex interaction
 - f_0 : pre-aggregator

Image from: <u>10.1103/PhysRevD.102.012010</u>




Study of Model Interoperability

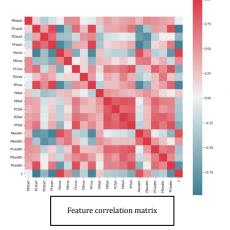
 How can we use a model with different machine architectures, OS, ML libraries?

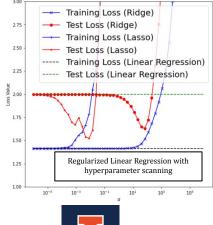
ML Library/Metric	Accuracy (%)	time / epoch (ms)	AUC score (%)
PyTorch	97.4	1.1	99.1
Onnx	97.4	0.8	99.1
TensorRT	97.4	9.9	99.1

Studies with 10k events with a batchsize of 1

Streamlining FAIR AI Development: The Cookiecutter

- Automation tool to implement best practices in organizing the development of AI models
- Based on <u>Cookiecutter Data Science</u>: adapted for HEP
- Creates an organized template for code and data organization
 - Automated download of data
 - Incorporate notebooks for studies
 - Containerization tools
 - Comprehensive list of project dependencies to build environment- compatible with tools like conda and pip
- A FAIRified repository for the Interaction Network model is being developed (<u>link</u>)

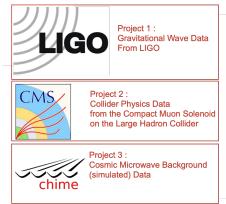


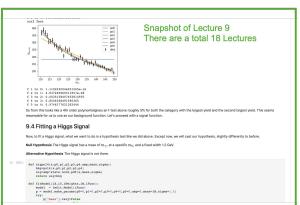

Pedagogical Introduction to FAIR

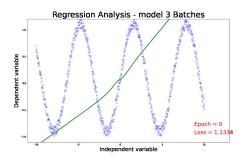
- Pedagogical introduction for FAIR principles and FAIR model development
- Dedicated tutorials for FAIR and ML in the context of HEP
- Uses the SuperCDMS dataset⁸ as benchmark data
- Explores a wide array of machine learning models- from linear regression to generative models

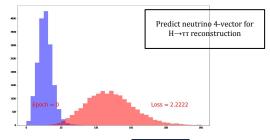
Link to repo: https://github.com/yorkiva/FAIR-Exercises

models	Added FAIR build up notebook for VAE	2 months ago
01-Intro2FAIR.ipynb	Fix typos	8 months ago
02-FAIRCheck-MNIST.ipynb	Update 02-FAIRCheck-MNIST.ipynb	last month
03-FAIRCheck-CDMS.ipynb	made changes to the notebooks	7 days ago
04a-CDMS-LR.ipynb	made changes to the notebooks	7 days ago
04b-CDMS-LR-FAIR.ipynb	New Notebooks added. Model files added.	6 months ago
05a-CDMS-PCA.ipynb	made changes to the notebooks	7 days ago
07a-CDMS_NNRegressor.ipynb	New Notebooks added. Model files added.	6 months ago
07b-CDMS_NNRegressor-FAIR.ip	Added FAIR build up notebook for VAE	2 months ago
08a-CDMS_NNVAE.ipynb	made changes to the notebooks	7 days ago
08b-CDMS_NNVAE-FAIR.ipynb	Added FAIR build up notebook for VAE	2 months ago
README.md	Update README.md	last month






ICHEP 2022


Data Science for Physics Class

- Initially designed as an online replacement of Junior lab at MIT during COVID pandemic
- Designed around real data analysis from different research frontiers
- To be launched as a full, independent course in Spring 2023 (material already available <u>here</u>)
- Dataset and project materials developed with FAIR guidelines
- An online version will be made available via the MITx platform

ICHEP 2022

Summary

- FAIR principles set a standard guideline for curation and preservation of digital content for scientific research
- FAIR4HEP is developing HEP-specific interpretation of FAIR and active implementation by developing FAIR datasets, models, and tools

PI. ANL

Co-Pl, UMN

Postdoc, UMN

Volodymyr Kindratenko Mark Neubauer

Yifan Chen

Javier Duarte

Co-PI, UCSD

Co-PL UIUC

Daniel Diaz Postdoc, UCSD

Billy Haoyang Li

Andrew Evans

Postdoc, UMN

MS Student, UIUC PhD Student, UCSD PhD Student, UCSD PhD Student, UMN

Undergrad, UCSD Undergrad, UCSD

References

- 1. Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18
- 2. Chue Hong, Neil P., Katz, Daniel S., Barker, Michelle et al. RDA FAIR4RS WG. (2022). FAIR Principles for Research Software (FAIR4RS Principles) (1.0). https://doi.org/10.15497/RDA00068
- 3. Richardson, R. A., et al. "User-friendly Composition of FAIR Workflows in a Notebook Environment." Proceedings of the 11th on Knowledge Capture Conference. 2021. https://doi.org/10.1145/3460210.3493546
- 4. Katz, D. S., Psomopoulos, F. E., and Castro, L. J. "Working towards understanding the role of FAIR for machine learning." DaMaLOS@ ISWC (2021): 1-7. https://doi.org/10.4126/FRL01-006429415
- 5. Chen, Y., Huerta, E.A., Duarte, J. et al. A FAIR and Al-ready Higgs boson decay dataset. Sci Data 9, 31 (2022). https://doi.org/10.1038/s41597-021-01109-0
- 6. Duarte, J; (2019). Sample with jet, track and secondary vertex properties for Hbb tagging ML studies HiggsToBBNTuple_HiggsToBB_QCD_RunII_13TeV_MC. CERN Open Data Portal. DOI:10.7483/OPENDATA.CMS.JGJX.MS7Q
- 7. Duarte, J., Rao, A. & Würthwein, F. Code for jmduarte/capstone-particle-physics-domain. *Zenodo*. https://doi.org/10.5281/zenodo.5594610 (2021) Chen, Y. & Duarte, J. Code for FAIR4HEP/FAIR4HEP-Toolkit. *Zenodo*, https://doi.org/10.5281/zenodo.5594610 (2021)
- 8. Fritts, M & Li, T. (2021). *CDMS-Dataset*. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/2660709
 Additional documentation and details: https://github.com/FAIR-UMN-CDMS, https://github.io/FAIR-UMN-CDMS, <a href="https://github.
- 9. Joshi, B & Rusack R. (2022). Laser Response in ECAL Crystals in CMS Detector (Version v1). Zenodo. https://doi.org/10.5281/zenodo.6394778
 Additional details: https://fair-umn.github.io/fair ecal monitoring

