
Modernisation of the LHCb
continuous integration build system

Maciej Szymański on behalf of the LHCb collaboration

CERN

ICHEP 2022 Bologna, 9th of July 2022



Nightly Builds Pipelines
• Critical service for the software development in LHCb

▶ centralised monitoring
▶ validation and testing

• ∼ 50 software stacks (aka slots) composed of up to ∼ 30 C++ interdependent
projects
▶ checkout, build and (unit) test
▶ every night
▶ on demand for most important use cases
▶ several platforms (architecture, OS, compiler, build type)

• Essential to provide fast turnaround of
produced builds
▶ summaries in the dashboard
▶ artifacts (e.g. binaries deployed to shared file

system)

1 18



Motivation for modernisation

Old design has reached its scalability limit
• increasing number of builds on demand makes the system a continuous

integration framework rather than just nightly
• monolithic tasks giving no flexibility
• redundant job executions

Jenkins, our automation server, causes quite frequent issues
• does not prove stable enough with our workload
• used only to schedule tasks on remote machines
• problematic upgrades

https://www.jenkins.io/artwork/
2 18

https://www.jenkins.io/artwork/


Design of the new continuous integration build system

• Checkout, build and test split per project/platform
▶ instead of per slot
▶ parallel jobs increase the overall throughput

• Tasks organised in a directed acyclic graph
▶ be faster by doing less!
▶ profit from reusing the cached artifacts, whenever possible
▶ e.g. no need for running checkout if sources unchanged

• Remote execution
▶ distributing the actual CPU intensive workload to the build farm

• Family of Python packages with focused responsibilities
• Aim for simpler and cleaner solution compared with the legacy one
• Easy deployment for development and production environments

3 18

https://gitlab.cern.ch/lhcb-core/nightly-builds


Optimisation using deployed artifacts

• In the legacy system, tasks spend significant resources downloading the
artifacts from the repository and extracting files from archives

• Recently, LHCb software publication rate to CVMFS has been greatly improved
(EPJ Web Conf. 251 (2021) 02034)
▶ deployment of the binaries takes typically less than 5 minutes

• Saving IO by using artifacts deployed to CVMFS!
▶ trigger the installation of sources and binaries asap
▶ use directly deployed dependencies for subsequent builds and tests

4 18

https://inspirehep.net/literature/1911697


High-level architecture overview

5 18



Underlying services

• Flask web application for user interactions
• CouchDB instance to store the result summaries
• RPC services to schedule and distribute the workload
• RabbitMQ instance as a RPC communication protocol
• MySQL as a RPC tasks backend
• S3 repository for the artifacts
• Nexus frontend for S3
• OpenSearch instance to collect the logs

• Deployed in OpenShift, systemd + Puppet, CERN Database On Demand service,
CERN infrastructure, or self–hosted

• Started investigating deployment of a dedicated Kubernetes cluster
• Development infrastructure based on docker-compose

6 18



lb-nightly packages

Releases uploaded to PyPI and conda-forge

7 18

https://gitlab.cern.ch/lhcb-core/nightly-builds/


Scheduling the tasks

• Using Luigi, a Python task manager
• Similar to make in the way it handles tasks, dependencies and artifacts
• Takes care of (dynamic) dependency resolution, workflow management,

handling failures
• Code in lb-nightly-scheduler

8 18

https://luigi.readthedocs.io/en/stable/index.html
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-scheduler


Luigi visualiser: DAG of lhcb-head slot

• Nodes denote checkout, build, test,
deployment tasks for all the projects
in a slot

• Edges show dependencies between
▶ types of tasks (e.g. deploy sources

depends on checkout)
▶ projects (e.g. LHCb depends on

Gaudi), resolved dynamically

9 18



Remote execution

• Based on Celery, a distributed task queue system
• Application delegating tasks to workers

▶ using message queues (RabbitMQ)
▶ responsible for routing the task depending on the architecture
▶ enables introducing job priorities
▶ defining retry policy
▶ setting up the workers (e.g. build worker should not run concurrent tasks)

• Code in lb-nightly-rpc

10 18

https://docs.celeryproject.org/en/stable/
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-rpc


Remainder of the family of lb-nightly packages

lb-nightly-functions
• actual functions used to checkout, build and test projects

▶ provide wrappers to run within Singularity containers
▶ log collection using AsyncIO and UNIX sockets

lb-nightly-configuration
• definition of basic abstractions (e.g. Project, Slot)

lb-nightly-db
• functions to communicate with the database

lb-nightly-utils
• e.g. artifacts repository class abstracting the location of the artifacts

11 18

https://gitlab.cern.ch/lhcb-core/nightly-builds/
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-functions
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-configuration
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-db
https://gitlab.cern.ch/lhcb-core/nightly-builds/lb-nightly-utils


Environments

• Essential to keep versions of dependencies under control
• Separate environments for

▶ workers (lb-nightly-rpc + dependencies)
▶ scheduler (lb-nightly-scheduler + dependencies)
▶ functions (lb-nightly-functions + singularity + cmake + ninja etc.)

• Making use of conda package manager
• Environments defined by hash of the content
• Automatically deployed to CVMFS through GitLab CI

12 18



Monitoring the scheduler

13 18



Monitoring the workers and tasks in Flower

14 18

https://flower.readthedocs.io/en/latest/index.html


Monitoring the raw logs in OpenSearch Dashboards

15 18



Nightlies dashboard

16 18



Monitoring the build summaries

17 18



Summary

• Crucial to provide a robust continuous integration system for building LHCb
software stacks

• Newly designed system is much more efficient and cleaner than the legacy one
▶ increased overall throughput and performance
▶ splitting and parallelising the tasks
▶ caching and reusing the artifacts to save the usage of resources
▶ relevant monitoring
▶ better control after dropping dependency on Jenkins
▶ usage of Open Source tools

• Working towards deployment of the new system in production

18 / 18


