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test for the location parameter of a Gaussian random variable when the true parameter
is on a boundary of the parameter space, showing that it behaves like a random variable
with half the probability mass concentrated at zero and the rest �2-distributed with one
degree of freedom. Moran [12] and Chant [13] investigate the relationship between op-
timal tests and tests based on maximum likelihood estimators under similar conditions.
Self and Liang [14] summarize and extend the earlier results and is particularly readable
with examples covering many common situations that practitioners may face. Feng [15]
provides method for constructing confidence regions that is easy to use and has asymptot-
ically correct coverage probability. Similarly to the high-energy physics community, other
fields have independently investigated the issue, with particular attention paid to the spe-
cific idiosyncracies of each respective field, e.g. financial econometrics (Andrews [16]) and
biostatistics (Pinheiro and Bates [17]).

1.2 Overview of EFT Fits

Let us consider new physics (NP) contributions that are only weakly coupled at the exper-
imental interaction scale. We then consider the leading order case in which all diagrams
with two or more new physics couplings are expected to contribute a small e↵ect and are
neglected. The expected cross section is proportional to the squared transition amplitude
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where f labels some final state property, MSM is the transition amplitude considering

diagrams with only Standard Model couplings, M(c↵)
NP considers diagrams which contain

one NP coupling modulated by real coupling strength c↵ 2 R, and c is the set of all relevant
coupling strengths indexed by ↵. We note that a complex coupling strength can always be
expanded into one real and one imaginary part each modulated by real coe�cients, and
so this treatment remains general. Expanding and collecting terms, we find a quadratic
parameterisation
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where all l↵, t↵,� and n↵ are functions of f only. By collecting the final states into a series
of di↵erential bins which integrate over the final state property, we can write
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where µ is a vector of cross sections and {l↵, t↵,� , n↵} are individual component vectors
which may be evaluated analytically or using Monte Carlo estimation. All elements of µ,
s and n↵ are positive definite, whereas the elements of l↵ and t↵,� may be either positive
or negative.

Consider that x labels a vector of observed cross sections. In the asymptotic limit we
assume that this is distributed according to a Gaussian statistical model

px (x|c) =
1p
2⇡|⌃|

e
� 1

2 �2(x;c) (4)

�
2 (x; c) = (x� µ (c))T ⌃�1 (x� µ (c)) (5)

where ⌃ is the covariance matrix. The profile likelihood ratio (PLR) test-statistic is then
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Can enter with linear or quadratic dependence into your 
observable of choice
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e.g. cross section

New Physics

s, l, t, n = constant, linear, mixed, quadratic terms

 = your likelihood evaluated under observation x, c value of Wilson coefficientpx(x |c)

Wilks’ theorem states that the profile likelihood ratio 
(PLR) test-statistics is distributed like a -distributionχ2

Wilks’ theorem
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) χ2

Toy example with 
linear coefficient

Let’s assume you are carrying out a new physics search using an EFT approach 
with either linear or quadratic terms using an observation x

interference of NP 
with SM dominates

pure new physics 
dominates Distributed as a Gaussian with width 1

E [μ] = 0.5

E [μ] = 0.25

The observations are distributed ~  and we note that they can take positive 
and negative values 

E[x]

The maximum likelihood estimators 
though look very different: for the linear 
term we can find always a  value to 
describe negative observations

c

Since the optimization step reaches the boundary of its parameter space, 
Wilks’s theorem is violated and your statistical coverage is compromised

μ(c) = c μ(c) = c2 x ∼ 𝒢(μ, Σ = 1)

But for quadratic terms any fluctuation 
below  leads to x = 0 c2

MLE = 0

The power and rigor of modern high-energy physics analysis are defined by both the 
quality of the experimental measurement and the quality of the statistical analysis 
performed on it. We spend much time and money on performing world-leading 
measurements, and should also invest in ensuring that the statistical analysis is as 
powerful and rigorous as possible.


We demonstrate what can go wrong in EFT fits, and propose asymptotic solutions to 
recover the correct coverage properties. 

and Now let’s fix it

z
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3.2.2 An example

We now use a toy example to test the results of Eqs. 11 and 14. We consider a single
Wilson coe�cient c with a purely quadratic dependence and

n̄ = {0.0, 0.0, 0.1, 0.2, 0.3, 0.5, 0.8} (16)

Fig 3 (top row) shows the probability density function (PDF) of qctrue for increasing values
of c2true. Pseudo-experiments are shown as the shaded histogram and labelled Toys. Over-
layed lines show the results of our two methods as well as the �

2-distribution if Wilks’
theorem were assumed. A vertical dotted line represents the threshold above which Wilks’
theorem is violated. The second row shows the corresponding cumulative distribution
functions (CDFs), which are used to derive p-values.

Figure 3: Demonstration of the validity of our method when considering a single Wilson
coe�cient which modulates the purely quadratic contributions described by Eq 16.

When c
2
true = 0, the PDF is equal to 1

2� (qctrue) +
1
2p

(1)
�2 (qctrue). As c

2
true increases,

the �
2-validity threshold moves upwards from 0. When c

2
true � 0, the threshold is high

enough that Wilks’ theorem is able to describe the distribution over all relevant values
of qctrue . This is because Wilks’ theorem is only valid when it is unlikely that parameter
profiling will encounter the boundary at c = 0. This condition is only satisfied when the
true hypothesis is far from the Standard Model. By contrast, our method agrees well
with pseudo-experiments for all values of c

2
true. Furthermore we observe that the two

implementations of our method are essentially identical.
The bottom panel of Fig 3 shows the coverage one obtains when deriving 95% confi-

dence limits when assuming Wilks’ theorem compared with our method. When c
2
true ⇠ 0,

the Wilks case fails to exclude c2true in half of all cases expected. This is because 50% of all

9

For the quadratic case this can actually easily be fixed: A short calculation 
shows that the correct distribution for the test statistics is:

SciPost Physics Submission

Figure 2: Illustration showing how the �
2-profile for a purely quadratic EFT model de-

pends on ˆ̄
Zn. When ˆ̄

Zn > �N̄c
2
true, the profile has two equal �2-minima. Below this

threshold it has only one, always at c0 = 0. This causes the conditional statement in Eq 9.

3.2 Quadratic case

For the quadratic case with |l| = 0 and |n| > 0, we find
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Once again we have minimised the term in square brackets by setting the derivative equal
to zero and selecting the roots which correspond to global �2 minima. We see that there
are two possible cases. This can be understood by considering how the shape of the �

2-

profile depends on ˆ̄
Zn, as illustrated by the di↵erent panels in Fig 2. When ˆ̄

Zn > �N̄c
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the profile has two equal �2-minima at c02 = ctrue
2 + Z̄n/N̄

2. Otherwise there is only one
minimum at c0 = 0. Using the result of Eq 9 we identify the following three cases:

ˆ̄
Zn � N̄c

2
true

qctrue � N̄
2
c
4
true and qctrue follows a �

2-distribution with one degree
of freedom.

| ˆ̄Zn| < N̄c
2
true

qctrue < N̄
2
c
4
true and qctrue follows a �

2-distribution with one degree
of freedom.

ˆ̄
Zn  �N̄c

2
true

qctrue � N̄
2
c
4
true and qctrue follows a Gaussian distribution with mean

�N̄
2
c
4
true and variance 4N̄2

c
4
true.

Since ˆ̄
Zn is symmetrically distributed around 0, the first and last cases must occur

with equal frequency, and we can write the final distribution of qctrue as

pq (qctrue) =

(
p
(1)
�2 (qctrue) qctrue < N̄

2
c
4
true

1
2p

(1)
�2 (qctrue) + N

�
qctrue ;�N̄

2
c
4
true, 2N̄c

2
true

�
qctrue � N̄

2
c
4
true

(11)

7

SciPost Physics Submission

Figure 2: Illustration showing how the �
2-profile for a purely quadratic EFT model de-

pends on ˆ̄
Zn. When ˆ̄

Zn > �N̄c
2
true, the profile has two equal �2-minima. Below this

threshold it has only one, always at c0 = 0. This causes the conditional statement in Eq 9.

3.2 Quadratic case

For the quadratic case with |l| = 0 and |n| > 0, we find

�
2 (z̄; c) =

��z̄ �
�
c
2 � c

2
true

�
n̄
��2

qctrue = z̄
2 �min

c02

���z̄ �
⇣
c
02 � c

2
true

⌘
n̄

���
2
�

=

(
ˆ̄
Z

2

n if ˆ̄
Zn � �N̄c

2
true

�N̄
2
c
4
true � 2N̄c

2
true

ˆ̄
Zn otherwise

(9)

where

N̄
2 =

X

i

n̄
2
i ˆ̄ni =

n̄ip
N̄2

Z̄n =
X

i

n̄iz̄i
ˆ̄
Zn =

X

i

ˆ̄niz̄i (10)

Once again we have minimised the term in square brackets by setting the derivative equal
to zero and selecting the roots which correspond to global �2 minima. We see that there
are two possible cases. This can be understood by considering how the shape of the �

2-

profile depends on ˆ̄
Zn, as illustrated by the di↵erent panels in Fig 2. When ˆ̄

Zn > �N̄c
2
true

the profile has two equal �2-minima at c02 = ctrue
2 + Z̄n/N̄

2. Otherwise there is only one
minimum at c0 = 0. Using the result of Eq 9 we identify the following three cases:

ˆ̄
Zn � N̄c

2
true

qctrue � N̄
2
c
4
true and qctrue follows a �

2-distribution with one degree
of freedom.

| ˆ̄Zn| < N̄c
2
true

qctrue < N̄
2
c
4
true and qctrue follows a �

2-distribution with one degree
of freedom.

ˆ̄
Zn  �N̄c

2
true

qctrue � N̄
2
c
4
true and qctrue follows a Gaussian distribution with mean

�N̄
2
c
4
true and variance 4N̄2

c
4
true.

Since ˆ̄
Zn is symmetrically distributed around 0, the first and last cases must occur

with equal frequency, and we can write the final distribution of qctrue as

pq (qctrue) =

(
p
(1)
�2 (qctrue) qctrue < N̄

2
c
4
true

1
2p

(1)
�2 (qctrue) + N

�
qctrue ;�N̄

2
c
4
true, 2N̄c

2
true

�
qctrue � N̄

2
c
4
true

(11)

7

We can even now scan different values of  to progress from regions for 
which Wilks is completely adequate to the boundary of the parameter space

c2
true

SciPost Physics Submission

3.2.2 An example

We now use a toy example to test the results of Eqs. 11 and 14. We consider a single
Wilson coe�cient c with a purely quadratic dependence and

n̄ = {0.0, 0.0, 0.1, 0.2, 0.3, 0.5, 0.8} (16)

Fig 3 (top row) shows the probability density function (PDF) of qctrue for increasing values
of c2true. Pseudo-experiments are shown as the shaded histogram and labelled Toys. Over-
layed lines show the results of our two methods as well as the �

2-distribution if Wilks’
theorem were assumed. A vertical dotted line represents the threshold above which Wilks’
theorem is violated. The second row shows the corresponding cumulative distribution
functions (CDFs), which are used to derive p-values.

Figure 3: Demonstration of the validity of our method when considering a single Wilson
coe�cient which modulates the purely quadratic contributions described by Eq 16.

When c
2
true = 0, the PDF is equal to 1

2� (qctrue) +
1
2p

(1)
�2 (qctrue). As c

2
true increases,

the �
2-validity threshold moves upwards from 0. When c

2
true � 0, the threshold is high

enough that Wilks’ theorem is able to describe the distribution over all relevant values
of qctrue . This is because Wilks’ theorem is only valid when it is unlikely that parameter
profiling will encounter the boundary at c = 0. This condition is only satisfied when the
true hypothesis is far from the Standard Model. By contrast, our method agrees well
with pseudo-experiments for all values of c

2
true. Furthermore we observe that the two

implementations of our method are essentially identical.
The bottom panel of Fig 3 shows the coverage one obtains when deriving 95% confi-

dence limits when assuming Wilks’ theorem compared with our method. When c
2
true ⇠ 0,

the Wilks case fails to exclude c2true in half of all cases expected. This is because 50% of all

9

Wilks’ piece

New   piece

Boundary of parameter space

Wilks leads to the 
wrong coverage

We can investigate how expected 
95% coverage differs when using 
Wilks versus our method and versus 
the assumed value of c2

true

Scenario assuming  and unit variancesn̄ = {0,0,0.1,0.2,0.3,0.5,0.8}

onto more complicated cases:

Conclusion

We also investigated and derived the correct distributions for 2D scans of 

two quadratic Wilson coefficients:

The full linear + Quadratic Case
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Figure 6: Density of pseudo-experiments compared with our method for a 2D example
with n̄1 = (0.5, 0.1), n̄2 = (0.4, 0.4) and a strong positive correlation of ⇢ = 0.83. Our
method is able to describe cases with ctrue ⇠ (0, 0) where Wilks’ theorem is violated.

Figure 7: Expected 95% coverage assuming Wilks (left) and using our method (right) for
a 2D example with n̄1 = (0.5, 0.1), n̄2 = (0.4, 0.4) and a strong positive correlation of
⇢ = 0.83. Our method provides correct coverage for all ctrue.

20
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theorem is strongly violated, whereas our solution agrees well with the toys. The bottom
panel shows the expected coverage of a 95% confidence interval. Our solution falls close to
the ideal line at 95% and significantly outperforms Wilks. The small deviation from 95%
is likely due to the precision associated with numerically integrating the sharp peak in the
PDF when qctrue ⇠ 0. We notice that Wilks’ theorem tended to over-cover in all the other
cases studied. However, here we observe it to significantly under-cover for many of the
hypotheses tested. This is a significant concern, as it could lead to exaggerated claims of
significance when excluding hypotheses.

Figure 11: Distributions of the PDF and CDF along with the expected coverage for the
multi-bin “linear plus quadratic” example defined by Eq 88.

6 Summary & Conclusion

The main purpose of this work is to highlight that Wilks’ theorem is not satisfied in
an EFT fit which contains significant contributions from the quadratic component. In
general, calculating p-values assuming Wilks’ theorem is seen to cause significant over-
coverage close to the Standard Model hypothesis. However, we also observe worrying
cases of under-coverage when the linear and quadratic components both contribute. We
explain why Wilks’ theorem is violated in these cases. It is because we break one of its
key conditions: when profiling the Wilson coe�cients we reach a boundary of parameter
space, whereas Wilks’ theorem assumes that we stay within a continuous bulk.

We derive the correct form of the asymptotic distribution for qctrue when profiling up to
two Wilson coe�cients, each of which modulating purely linear or quadratic contributions.
These distributions are defined by parameters which may be obtained experimentally by
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