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COVER ALL YOUR BASES!

Even without knowing, you might over-reliant using
Wilks’ theorem to determine your confidence limits...
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This is mostly fine, unless ... unless you are close to
the boundary of your configuration space
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Since the optimization step reaches the boundary of its parameter space,
Wilks’s theorem is violated and your statistical coverage is compromised
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ONTO MORE COMPLICATED CASES:

For the quadratic case this can actually easily be fixed: A short calculation
shows that the correct distribution for the test statistics is: ¥ =Y a2
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We also investigated and derived the correct distributions for 2D scans of
two quadratic Wilson coefficients:
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The power and rigor of modern high-energy physics analysis are defined by both the -
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We demonstrate what can go wrong in EFT fits, and propose asymptotic solutions to
recover the correct coverage properties.



