

SWSM PHENOMENOLOGY

ZOLTÁN TRÓCSÁNYI

EÖTVÖS UNIVERSITY AND UNIVERSITY OF DEBRECEN

Dark matter candidate [2]

- Portal candidate: Z' couples to all particles
- Dark matter candidate: lightest righthanded neutrino ν_1
- Mechanism: both freeze-in and freeze-٠ out are possible
- Freeze-out is viable only if DM ٠ produced resonantly, $2m_{\nu_1} \simeq M_{Z'}$

Experimental constraints [3]

- Anomalous magnetic moments of charged leptons
- Direct search for dark photon in NA64
- Supernova cooling
- Big Bang Nucleosynthesis

Allowed region in the $g_z - M_{Z'}$ plane to provide correct abundance of DM with resonant freeze-out

for more details see

- K. Seller's talk on Friday, 9 am, DM session
- Non-standard interactions give further constraints
 - for more details see T.J. Kärkkäinen's poster (518)

Superweak (SW) extended standard model (SM) [1]

designed to explain observations in particle physics and cosmology, not understood within the SM: the origin of

- dark matter [2,3]
- masses and mixing of neutrinos [4,5]
- baryon asymmetry
- late time accelerated expansion and cosmological inflation

Are these all possible within a single model?

We explore the viable parameter space [5] respecting

precision tests of the SM

New in SW as compared to the SM [1]

- a complex scalar
- three right handed neutrinos
- a gauged U(1)_z: all particles charged

Scalar sector constraints [6]

Masses and mixing of neutrinos [4]

• Dirac and Majorana mass terms appear at tree level by SSB (not radiatively):

$$M_{D} = \frac{v}{\sqrt{2}} Y_{\nu}, M_{R} = \frac{w}{\sqrt{2}} Y_{N'}, M' = \begin{pmatrix} 0_{3} & M_{D}^{T} \\ M_{D} & M_{R} \end{pmatrix}$$

 Light neutrino masses generated via Type-I seesaw:

$$\mathsf{M}_{\nu} = -\mathsf{M}_{\mathsf{D}}^{T}\mathsf{M}_{\mathsf{R}}^{-1}\mathsf{M}_{\mathsf{D}}$$

• Light neutrinos mix: $U_2^T M_{\nu} U_2 = M_{\nu}^{diag}$ where we may choose U_2 coincide with the PMNS matrix

Neutrino benchmarks [5]

Parametrize Y_{ν} to scan for allowed parameter space (at present only benchmark points **BP**) testable by future experiments:

	BP1	BP2	BP3	BP4	BP5
$m_1 ({\rm meV})$	0	0.4	0	0.16	1.0
M_1 (keV)	30	7.1	40	50	25000
$M_{2,3}$ (GeV)	2.5	3.0	3.5	2	1.5
w (GeV)	100	750	250	500	175
U^2	5.0×10^{-7}	1.4×10^{-7}	3.3×10^{-8}	6.3×10^{-8}	3.0×10^{-10}

 U_{ai} is the active-sterile mixing matrix

Work in progress

- Combination of constraints in a global scan
- Estimation of baryogengesis
- Exploration of cosmological

 lack of finding new particles at the LHC cosmological constraints

Acknowledgments

Work supported by grant K 125105 of the National Research, Development and Innovation Fund in Hungary.

consequences

• Prediction of observable new effects

References

[1] Z. Trócsányi, arXiv:1812.11189. [2] S. Iwamoto, K. Seller, Z. Trócsányi, arXiv:2104.11248. [3] K. Seller, arXiv:2112.00525. [4] S. Iwamoto, T.J. Kärkkäinen, Z. Péli, Z. Trócsányi, arXiv:2104.14571. [5] T.J. Kärkkäinen, Z. Trócsányi, arXiv:2105.13360. [6] Z. Péli, Z. Trócsányi, arXiv:2204.07100.