

Constraining the Gauged $U(1)_{L_{\mu}-L_{\tau}}$ Model by Supernova Neutrino Observation

Kwang-Chang Lai², *Chun Sing Jason Leung¹, Guey-Lin Lin¹, and Thi Dieu Hien Van¹

¹National Yang Ming Chiao Tung University, Taiwan ²Chang Gung University, Taiwan

The $U(1)_{L_{\mu}-L_{\tau}}$ model is one of the simplest anomaly free models to feature a new gauge boson Z' by extending the Minimal Standard Model group $G_{\text{MSM}} \equiv SU(3)_{\text{QCD}} \otimes SU(2)_{\text{Weak}} \otimes U(1)_{T_{\mu}-L_{\tau}}$. The new gauge boson Z' could affect the cooling mechanism of core-collapse supernove (SNe). The production of Z' in a SN might over contribute to the energy loss depending on the coupling magnitude $g_{Z'}$ between Z' and μ, τ leptons. Consequently, the SN neutrino production might be affected and contradict the recent SN neutrino observation, SN 1987A. We calculate the Z' production and absorption/decay rates through pair-coalescence, semi-Compton, loop-Bremsstrahlung from proton-neutron scattering, and their inverse processes with a benchmark SN simulation SFH018.8 (Thomas Janka *et al.*) and put constraints on the $g_{Z'}$ in this new gauged $U(1)_{L_{\mu}-L_{\tau}}$ model. Although such constraints were studied in previous literature, our study gives more stringent constraints on the model by carefully considering the competition between Z' production and absorption/decay effects to Z' luminosity at the very outermost shell of the neutrino sphere. We point out that Z' luminosity will tend to a constant plateau value depending on $m_{Z'}$ instead of monotonically decreasing down to zero as $g_{Z'}$ increases. This plateau phenomenon can be understood by physical arguments and justified by numerical calculations. We found that the plateau value of Z' luminosity will become greater than Raffelt's criterion when $m_{Z'} \leq 2$ eV. For $m_{Z'} \leq 2$ eV, the so-called trapping limit shall disappear completely. We stress that the plateau behavior in a large coupling limit should also occur for other BSM models that introduce new light bosons.

(5)

Inv Loop Brem

The $U(1)_{L_{\mu}-L_{\tau}}$ Model

The $U(1)_{L_{\mu}-L_{\tau}}$ model is a model constructed by extending the standard model of fundamental particles by a new gauge boson Z'. The Lagrangian of this model is given by

$$\mathcal{L}_{Z'} = \mathcal{L}_{SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{Z'}^2 Z'_{\mu} Z'^{\mu} + g_{Z'} Z'_{\mu} \left(\bar{l}_1 \gamma^{\mu} l_1 - \bar{l}_2 \gamma^{\mu} l_2 + \bar{\mu}_R \gamma^{\mu} \mu_R - \bar{\tau}_R \gamma^{\mu} \tau_R \right)$$

where l_1 and l_2 are the electroweak doublets for left-handed leptons $(\mu_L, \nu_{\mu,L})$ and $(\tau_L, \nu_{\tau,L})$ respectively.

Fig. 1: Feynman diagram that indicates the kinetic mixing ϵ in Eq. (1).

The new gauge boson Z' is only allowed to interact with leptons μ , $\nu_{\mu,L}$, τ and $\nu_{\tau,L}$ in tree level, as indicated in the second line of Eq. (1). The kinetic mixing between Z' and the standard model photon γ in the first line of Eq. (1) arises due to integrating out the μ and τ loops in Fig. 1.

Fig. 6: Z' Luminosity $L_{Z'}(m_{Z'}, g_{Z'})$

Fig. 7: The plateau value $L_{Z'}(m_{Z'}, \infty)$.

When $g_{Z'}$ is greater than a certain value, each of the luminosity curves reaches a constant plateau value instead of monotonically decreasing down to zero. This interesting plateau phenomenon is a manifestation of the competition between Z' production and absorption/decay, its magnitude depends on $m_{Z'}$ as shown on Fig. 6. On the other hand, the plateau value increases as $m_{Z'}$ decreases on figure 6. Moreover, it gets greater than the Raffelt bound when $m_{Z'}$ below around 2 eV. In other words, when $m_{Z'} < 2$ eV the excluded parameter region will not bound from above (the trapping limit) anymore. Thus, the plateau phenomenon stringent the model substantially when $m_{Z'} < 2$ eV.

Luminosity of The Dark Boson Z'

The new gauge boson Z' luminosity within the neutrino sphere R_{ν} in a SN is given by

$$L_{Z'}(m_{Z'}, g_{Z'}) = 4\pi \int_0^{R_\nu} \int_{m_{Z'}}^{\infty} r^2 \bar{\mathcal{A}}(\lambda_{\text{att}}(\omega, T), R_\nu) \sum_i \frac{d\dot{\epsilon}_i}{d\omega} d\omega dr$$
(2)

where $d\dot{\epsilon}/d\omega$ and λ_{att} are the *differential emissivity* and the *attenuation length* of Z' emission (see Fig. 4) and re-absorption processes respectively. $\bar{\mathcal{A}}$ is the average of the *attenuation factor* over a polar angle θ , with $y = \cos \theta$.

$$\bar{r}_{\theta}^{r} = \frac{1}{2} \int_{-1}^{1} \exp\left(-\int_{0}^{r_{\theta}^{Max}} \frac{1}{\lambda_{att}(\omega, T)} dr_{\theta}\right) dy \qquad (3)$$

$$= \frac{1}{2} \int_{0}^{1} \exp\left(-\int_{r}^{R_{\nu}} \frac{1}{\lambda_{att}} \frac{r'}{\sqrt{r^{2}(y^{2}-1)+r'^{2}}} dr'\right) dy$$

$$+ \frac{1}{2} \int_{-1}^{0} \exp\left(-\int_{r}^{r} \frac{1}{\lambda_{att}} \frac{r'}{\sqrt{r^{2}(y^{2}-1)+r'^{2}}} dr'\right) dy$$

$$+ \frac{1}{2} \int_{-1}^{0} \exp\left(-\int_{r\sqrt{1-y^{2}}}^{R_{\nu}} \frac{1}{\lambda_{att}} \frac{r'}{\sqrt{r^{2}(y^{2}-1)+r'^{2}}} dr'\right) dy$$
(4)

The dark Z' luminosity is constrainted by the Raffelt's criterion $L_{\rm R}$, which is a rough estimation on the energy rate carried away by SN neutrinos at $t_{\rm pb} = 1$ s.

Raffelt's criterion : $L_{Z'} < L_{\rm R} = 3 \times 10^{52} \, [{\rm erg/s}]$

Fig. 8: Region excluded by L_R .

Fig. 9: Comparison with previous works.

The region enclosed by the magenta line on Fig. 8 represents an excluded region that corresponds to Z' luminosity $L_{Z'} > L_{\text{Raffelt}}$. The upper magenta curve tends to a vertical line when $m_{Z'}$ approaches ~ 2 eV from above, which exclude all the parameter space g'_Z and the trapping limit shall disappear due to the plateau phenomenon. As a comparison to the previous work done by McDermott *et al.* [5] ($R_{\text{far}} = 100 \text{km} > R_{\nu} = 25 \text{ km}$, the region shaded in magenta colour on figure 9), the production and absorption processes have been treated on an equal footing in our work, i.e., $R_{\text{far}} = R_{\nu} = 25 \text{ km}$, in the numerical calculation on the attenuation factor (see Eq. (3) and (4)). Results in a plateau phenomenon as indicated on Figs 6 and 7. Consequently, the excluded region will be extended accordingly, and the trapping limit shall disappear when $m_{Z'} \leq 2 \text{ eV}$.

Conclusion

We used Raffelt's criterion (see Eq. (5)) to put constraints on the parameter space $(m_{Z'}, g_{Z'})$ of the $U(1)_{L_{\mu}-L_{\tau}}$ model (Fig. 8 and 9) and made comparison to the previous work (McDermott *et al.* [5]). Results in a plateau phenomenon as indicated on Figs 6 and 7. The trapping limit shall disappear as a consequence of the plateau phenomenon when $m_{Z'} \leq 2$ eV.

The plateau phenomenon purely comes from the competition between the production and the reabsorption rates, therefore, we expect the plateau should also occur in a large coupling limit for other BSM models that introduce new light boson.

Reaction Channels

Inv Semi-Comp

Fig. 5: Dominant Z' re-absorption processes in a core-collapse supernova.

Z' Decay

Main References

[1] Georg G. Raffelt, "Stars as Laboratories for Fundamental Physics", (1996).
[2] Xiao-Gang He et al., "Simplest Z' Model", Phys. Rev. Lett. 44, 2118 (1991)
[3] Hans-Thomas Janka et al., "Muons in Supernovae: Implications for the Axion-Muon Coupling", Phys. Rev. Lett. 125, 051104 (2020);

 [4] Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, "Revisiting Supernova 1987A Constraints on Dark Photons", J. High Energy Phys. 107 (2017)

[5] Samuel D. McDermott et al., "Supernova Muons: New Constraints on Z' Bosons, Axions and ALPs", J. High Energy Phys. 107 (2021)

[6] D.W.P. Amaral et al., "Solar neutrino probes of the muon anomalous magnetic moment in the gauged $U(1)_{L_{\mu}-L_{\tau}}$ ", J. High Energy Phys. **155** (2020)

 [7] Wolfgang Altmannshofer et al., "Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams", Phys. Rev. Lett. 113, 091801 (2014)