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The U(1)Lµ−Lτ
model is one of the simplest anomaly free models to feature a new gauge boson Z ′ by extending the Minimal Standard Model group GMSM ≡ SU(3)QCD ⊗

SU(2)Weak⊗U(1)Y → GMSM⊗U(1)Lµ−Lτ
. The new gauge boson Z ′ could affect the cooling mechanism of core-collapse supernove (SNe). The production of Z ′ in a SN might over

contribute to the energy loss depending on the coupling magnitude gZ ′ between Z ′ and µ, τ leptons. Consequently, the SN neutrino production might be affected and contradict
the recent SN neutrino observation, SN 1987A. We calculate the Z ′ production and absorption/decay rates through pair-coalescence, semi-Compton, loop-Bremsstrahlung from
proton-neutron scattering, and their inverse processes with a benchmark SN simulation SFHo18.8 (Thomas Janka et al.) and put constraints on the gZ ′ in this new gauged
U(1)Lµ−Lτ

model. Although such constraints were studied in previous literature, our study gives more stringent constraints on the model by carefully considering the competition
between Z ′ production and absorption/decay effects to Z ′ luminosity at the very outermost shell of the neutrino sphere. We point out that Z ′ luminosity will tend to a constant
plateau value depending onmZ ′ instead of monotonically decreasing down to zero as gZ ′ increases. This plateau phenomenon can be understood by physical arguments and justified
by numerical calculations. We found that the plateau value of Z ′ luminosity will become greater than Raffelt’s criterion when mZ ′ . 2 eV. For mZ ′ . 2 eV, the so-called trapping
limit shall disappear completely. We stress that the plateau behavior in a large coupling limit should also occur for other BSM models that introduce new light bosons.

The U(1)Lµ−Lτ
Model

The U(1)Lµ−Lτ
model is a model constructed by extending the standard model of fundamental

particles by a new gauge boson Z ′. The Lagrangian of this model is given by
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where l1 and l2 are the electroweak doublets for left-handed leptons (µL, νµ,L) and (τL, ντ,L)
respectively.
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Fig. 1: Feynman diagram that indicates the ki-
netic mixing ε in Eq. (1).

The new gauge boson Z ′ is only allowed
to interact with leptons µ, νµ,L, τ and ντ,L in
tree level, as indicated in the second line of
Eq. (1). The kinetic mixing between Z ′ and
the standard model photon γ in the first line
of Eq. (1) arises due to integrating out the µ
and τ loops in Fig. 1.

The SFHo18.8 SN Simulation
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Fig. 2: Some of the SFHo18.8 simulation data provided by Thomas Janka et al. [3]

Luminosity of The Dark Boson Z ′

The new gauge boson Z ′ luminosity within the neutrino sphere Rν in a SN is given by

LZ ′(mZ ′, gZ ′) = 4π
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where dε̇/dω and λatt are the differential emissivity and the attenuation length of Z ′

emission (see Fig. 4) and re-absorption processes respectively. Ā is the average of the atten-
uation factor over a polar angle θ, with y = cos θ.
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Fig. 3: Geometric interpretation
of those integrals in Eq. (4).
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The dark Z ′ luminosity is constrainted by the Raffelt’s criterion LR, which is a rough
estimation on the enery rate carried away by SN neutrinos at tpb = 1 s.

Raffelt’s criterion : LZ ′ < LR = 3× 1052 [erg/s] (5)
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Fig. 4: Dominant Z ′ emission processes in a core-collapse supernova.
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Fig. 5: Dominant Z ′ re-absorption processes in a core-collapse supernova.
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Fig. 6: Z ′ Luminosity LZ ′(mZ ′, gZ ′)
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Fig. 7: The plateau value LZ ′(mZ ′,∞).

When gZ ′ is greater than a certain value, each of the luminosity curves reaches a con-
stant plateau value instead of monotonically decreasing down to zero. This interesting
plateau phenomenon is a manifestation of the competition between Z ′ production and ab-
sorption/decay, its magnitude depends on mZ ′ as shown on Fig. 6. On the other hand,
the plateau value increases as mZ ′ decreases on figure 6. Moreover, it gets greater than
the Raffelt bound when mZ ′ below around 2 eV. In other words, when mZ ′ < 2 eV
the excluded parameter region will not bound from above (the trapping limit) anymore.
Thus, the plateau phenomenon stringent the model substantially when mZ ′ < 2 eV.
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Fig. 8: Region excluded by LR.
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Fig. 9: Comparison with previous works.

The region enclosed by the magenta line on Fig. 8 represents an excluded region that cor-
responds to Z ′ luminosity LZ ′ > LRaffelt. The upper magenta curve tends to a vertical line
when mZ ′ approaches ∼ 2 eV from above, which exclude all the parameter space g′Z and the
trapping limit shall disappear due to the plateau phenomenon. As a comparison to the pre-
vious work done by McDermott et al. [5] (Rfar = 100km > Rν = 25 km, the region shaded
in magenta colour on figure 9), the production and absorption processes have been treated
on an equal footing in our work, i.e., Rfar = Rν = 25 km, in the numerical calculation on
the attenuation factor (see Eq. (3) and (4)). Results in a plateau phenomenon as indicated
on Figs 6 and 7. Consequently, the excluded region will be extended accordingly, and the
trapping limit shall disappear when mZ ′ . 2 eV.

Conclusion

We used Raffelt’s criterion (see Eq. (5)) to put constraints on the parameter space (mZ ′, gZ ′)
of the U(1)Lµ−Lτ

model (Fig. 8 and 9) and made comparison to the previous work (McDer-
mott et al. [5]). Results in a plateau phenomenon as indicated on Figs 6 and 7. The trapping
limit shall disappear as a consequence of the plateau phenomenon when mZ ′ . 2 eV.

The plateau phenomenon purely comes from the competition between the production
and the reabsorption rates, therefore, we expect the plateau should also occur in a large
coupling limit for other BSM models that introduce new light boson.
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