Neutrino phenomenology, $(g-2)_{\mu,e}$ with U(1) gauge symmetries in inverse seesaw framework

Papia Panda *, Priya Mishra, Mitesh Kumar Behera, Rukmani Mohanta

School of Physics, University of Hyderabad, Hyderabad, India

1. Introduction

- We have taken two anomaly-free gauge symmetries $(U(1)_{B-L} \times U(1)_{L_e-L_{\mu}})$ in the framework of inverse seesaw mechanism to study neutrino phenomenology.
- As the extra particles over Standard Model particles, three right-handed neutrinos, three left-handed neutral fermions and two scalar singlets are taken.
- In addition to neutrino phenomenology, we have studied electron and muon (g-2), non-unitarity, neutrinoless double beta decay to complete the neutrino physics study.

2. Model Description

3. $0\nu\beta\beta$ effective mass

• Particles present in the proposed model are grouped in following table:

	Particles	$SU(2)_L \times U(1)_Y$	$U(1)_{B-L}$	$U(1)_{L_e-L_{\mu}}$
Fermions	l_L	(2, -1)	-1	1, -1, 0
	l_R	(1 ,-2)	-1	1, -1, 0
	$N_{iR}(i = 1, 2, 3)$	(1 ,0)	-1	1, -1, 0
	$S_{iL}(i = 1, 2, 3)$	(1 ,0)	0	0
Scalars	H	(2 ,1)	0	0
	χ_1	(1 ,0)	-1	1
	χ_2	(1 ,0)	1	0

• The Lagrangian for lepton sector is,

$$\mathcal{L}_{lepton} \supset \mathcal{L}_{S\mathcal{M}} + \left[y_D^e \bar{\ell}_{e\mathrm{L}} \tilde{H} N_{1R} + y_D^{\mu} \bar{\ell}_{\mu\mathrm{L}} \tilde{H} N_{2R} + y_D^{\tau} \bar{\ell}_{\tau\mathrm{L}} \tilde{H} N_{3R} \right] + \left[y_{NS}^{11} \bar{N}_{1R} S_{1L} \chi_1 + y_{NS}^{12} \bar{N}_{1R} S_{2L} \chi_1 + y_{NS}^{13} \bar{N}_{1R} S_{3L} \chi_1 + y_{NS}^{33} \bar{N}_{3R} S_{3L} \chi_2^* \right] + \left[\mu_1 \bar{S}_{1L}^C S_{1L} + \mu_2 \bar{S}_{2L}^C S_{2L} + \mu_3 \bar{S}_{3L}^C S_{3L} \right] + h.c.$$

• Active neutrino mass matrix in inverse seesaw mechanism framework can be written as:

 $m_{\nu} = M_D^T (M_{NS}^{-1})^T M_{\mu} M_{NS}^{-1} M_D$.

- Neutrinoless double beta decay (NDBD) is one of the experiment to know the nature of neutrinos (is it Dirac or Majorana).
- The expression for NDBD is:

 $(A, Z) \to (A, Z+2) + 2e^+$, (3)

• In our work, we have found the bound on effective mass of NDBD is [0.005-0.02] meV.

4. Non-unitarity

• The expression for non-unitarity mixing matrix is:

$$N = (1 - \eta) U_{\rm PMNS} \tag{4}$$

• We have calculated the non-unitary parameter η which is well below to the experimental upper limit.

5. Results

(1)

(2)

First plot shows the variation of sum of active neutrino mass with respect to oscillation parameter $\sin^2 \theta_{13}$, second one gives the correlation plot of $\sin^2 \theta_{13}$ and $\sin^2 \theta_{12}$, third plot depicts effective mass of NDBD in variation of sum of active neutrino mass.

5.0 5.5 6.0 6.5 7.0 15 20 25 30 35 40 $1.\times10$ 0.020 0.025 0.030 0.035 0.040 $g_1 \times 10^{-4}$ m_{Z_1} (MeV) m_{Z_1} [GeV]

Leftmost plot shows the variation of muon anomalous magnetic moment with the variation of gauge coupling g_1 , middle one gives the allowed range of gauge coupling g_1 with the appropriate range of m_{Z_1} , rightmost plot depicts the variation of coupling with mass of gauge boson with CCFR bound.

6. Conclusions

- Inverse seesaw mechanism is a very strong method for giving eV scale mass to active neutrinos.
- Two anomaly free gauge symmetries (over SM symmetry) successfully explain neutrino phenomenology, non-unitarity, effective mass of neutrinoless double beta decay, electron and muon anomalous magnetic moment.
- Two MeV scale singlet are present in the proposed model which can also be traced in recent and future experiments.

7. Reference

• P. Panda, P. Mishra, M. K. Behera, R. Mohanta, arXiv:2203.14536 [hep-ph].

8. Acknowledgement

• I want to acknowledge Prime Minister's Research Fellows for financial support.