

Nicholas Kamp, A. Schneider, M. Hostert, S. Vergani, A. Diaz, C.A. Argüelles, J.M. Conrad, M.H. Shaevitz, M.A. Uchida & the MiniBooNE Collaboration

The MiniBooNE Excess and Sterile Neutrinos

- The simplest explanation of the LSND $\bar{\nu}_e$ -like excess and MiniBooNE electron-like excess invokes oscillations involving an eV-scale sterile neutrino
- Recent MicroBooNE results [1] have disfavored a generic excess of electron neutrinos in the Booster Neutrino Beam, but do not rule out MiniBooNE's allowed region in oscillation parameter space [2, 3]
- The MiniBooNE collaboration has recently performed a combined 3+1 fit using MiniBooNE data and the MicroBooNE CCQE result [2]

- Even so, an eV-scale sterile neutrino is not able to explain the lowest energy and most forward parts of the MiniBooNE excess.
- Additionally, removing MiniBooNE reduces tension in global 3+1 oscillation fits by $\sim 2\sigma$ [4]

$$p_{\rm PG} = \begin{cases} 8 \times 10^{-7} (4.8\sigma) & \text{w/MiniBod} \\ 7 \times 10^{-3} (2.5\sigma) & \text{w/oMiniBod} \end{cases}$$

This motivates the study of more exotic BSM models in addition to standard 3+1 oscillations

Sterile Neutrino and Dipole Portal Explanations of the MiniBooNE Excess

	9 + 1 M' = D = MD D'
	3+1 MiniBooNE Fit
	3+1 Combined Fit
*	Best Fit
	1σ
	2σ
	3σ
• • • • •	4σ

- ONE
- ooNE

The Dipole Portal Model

- a dipole-coupled heavy neutral lepton (HNL)
- to photons

2201.01724 2206.07100

To accommodate the remaining MiniBooNE excess, we consider the addition of

MINERvA elastic scattering measurements [5] are also sensitive to HNL decays

