DARK MATTER DECAY TO NEUTRINOS

Dark matter (DM) particles are predicted to decay into Standard Model particles which would produce signals of neutrinos, gamma-rays, and other secondary particles. Neutrinos provide an avenue to probe astrophysical sources of DM particles. We review the decay of dark matter into neutrinos over a range of dark matter masses from MeV/c² to ZeV/c². We examine the expected contributions to the neutrino flux at current and upcoming neutrino and gamma-ray experiments, such as Hyper-Kamiokande, DUNE, CTA, TAMBO, and IceCube Gen-2. We consider galactic and extragalactic signals of decay processes into neutrino pairs, yielding constraints on the dark matter decay lifetime that ranges from $\tau \sim 1.2 \times 10^{21}$ s at 10 MeV/c² to $1.5 \times 10^{29} \text{s at } 1 \text{ PeV/c}^2$.

NEUTRINO AND GAMMA-RAY EXPER				
BC	prexino : Liquid scintillator (MeV). Solar neutrinos. Active mass: 278 tons.			
Kam LANE	amLAND: Liquid scintillator (MeV). Extraterrestria neutrino fluxes. Active mass: 1 kiloton.			
	UNE: Liquid Argon TPC (GeV). Atmospheric neutrino fluxes. Active mass: 17 kilotons.			
Ar	ntares: Sea Water Cherenkov. (GeV-TeV). Atmospheric neutrinos.			
Su	IperKamiokande (SK) : Water Cherenkov. (GeV-Te Atmospheric neutrinos. Active mass: 22.5			
	eCube: Ice-Cherenkov detector. (TeV-PeV). Astrophysical neutrino flux. Active mass: 1 gigat			
P-	ONE : Water Cherenkov (PeV). Extraterrestrial ne AMBO : Water Cherenkov. (PeV). Astrophysical Ta			
PIERRE AUGER OBSERVATORY	u ger : Water Cherenkov. Ultra-High-Energy Cosmi			
GRIND GI	RAND: Radio Array. (EeV) Tau Neutrinos.			
LHAASO	HAASO: Hybrid Air Shower. Gamma Rays. (GeV -			
Han Altitude Water Cherenkor Gamma-Rig Observatory	AWC : Water Cherenkov. Gamma Rays and Cosmi (GeV - TeV)			
Cta CT	FA : Air Cherenkov. High Energy Gamma Rays. (Te			

Diyaselis Delgado¹, Carlos Argüelles¹, Avi Friedlander², Ali Kheirandish³, Ibrahim Safa⁴, Aaron Vincent², Henry White² ¹Harvard University, Cambridge, MA, USA;²Queen's University, ON, Canada;³ Pennsylvania State University Park, PA, USA; ⁴University of Winsconsin, Madison, WI, USA

IMENTS

ēV). kilotons.

ton.

eutrino fluxes.

au neutrinos.

ic Rays (EeV).

PeV)

c Rays.

۶V).

INTRODUCTION

- DM particles decay into Standard Model (SM) particles would produce signals of neutrinos, gamma-rays, and other secondary particles.
- Neutrinos are one of the least constrained channels for Dark Matter searches. We expect a correlated signal above the electroweak scale that will strengthen constraints or evidence of Dark Matter.
- We define two types of signals for DM decay to neutrinos: a prompt neutrino signal and neutrinos with a gamma emission from electroweak processes.

particle to $\nu_e \bar{\nu}_e$.

We can measure both neutrinos and gamma-rays as final products of Dark Matter decay to neutrinos which results in a correlated signature between the neutrino and gamma signal.

Thanks to major experimental advances in neutrino and gamma-ray detection we show the decay lifetime constraints in a wide DM mass range (MeV - ZeV).

The astrophysical differential neutrino flux of Dark Matter decay from the Galactic Center is given by:

$d\Phi$	_ 1	dN	$D(\Omega)$
\overline{dE}	-4π	\overline{dE}	m_{χ}

where mx is the Dark Matter mass, τ is the Dark Matter lifetime, dN/dE is either the neutrino or gamma production spectrum for DM decay to neutrinos.

The D-factor is the integral over the sky solid angle and along the line-of-sight of the dark matter density (NFW profile).

An extragalactic contribution to the neutrino flux is computed, which depends on the dark matter density and takes into account how gamma-rays get attenuated as they traverse the Universe.

Figure 2: This plot shows the constraints (solid) and projected sensitivities (dashed) of the analysis calculated for the neutrino signals. The sensitivities have been calculated at 90% C.L. without systematic uncertainties.

CONCLUSION AND OUTLOOKS

ANALYSIS

 $D = \int d\Omega \int \rho_{\chi} (\Omega, x) dx$