
PYTHIA8.3[4] is tuned to reproduce
the pTdistributions of p and !𝐩
measured by ALICE in inelastic pp 
collisions at LHC energies[5,6].

This choice is driven by the 
availability of precise and copious
antideuteron data from ALICE, 
not available at the energies 
mostly relevant for cosmic rays, 
√s ~ 10-25 GeV.

In PYTHIA, p (#p) and n (#n) are 
produced in the same amount and 
with the same pT-distributions.

2.1 Antinucleons from PYTHIA8.3 
tuned to LHC data
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1. Cosmic antinuclei as smoking guns for dark matter
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One key ingredient for the prediction of signal 
and background rates is the  modelling of the 
formation mechanism[3] of antimatter clusters.

àAntinuclei formation via coalescence of 
antinucleons, constrained by measurements 
at the LHC.

à Implementation of an afterburner to to 
produce antideuterons using PYTHIA8.3 
event generator input

AMS@ISS

Indirect searches for dark matter with space-based experiments[1] look for Standard
Model particles (e.g. e+, #p) coming from the annihilation of dark matter WIMPs in the
Galactic halo.

The detection of cosmic antideuterons (#d) and antihelium nuclei (3He, 4He) is a promising
smoking gun signature[2] because of the low background coming from secondary cosmic
rays (CR), i.e. from hadronic interactions of primary CR with the interstellar matter (pp, p-
He…) in the Galaxy.

2. From antinucleons to antinuclei

The formation of a #d by coalescence is the 
result of final state interactions[7,8] between a 
#p and a #n.

The coalescence probability is given by the 
overlap of the nucleus and the nucleon wave 
functions and depends on
• the momentum 
• the size of the nucleon source 
• the nucleus wavefunction 

We compute this probability, w, event by 
event and for each possible (#p, #n) pair 
following the approach in [9]

E.g. For a !d single-Gaussian wf.

𝑞 = |𝑝! − 𝑝"|/2,
d = RMS charge radius of !d = 3.2 fm
σ = source size (fixed) = 0.84 fm (Realistic? Unmeasured!)

2.2 Coalescence based on state-of-the-art 
Wigner function approach

4. Conclusions and next steps
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3. Results from the afterburner

The current implementation, for prompt antinucleons, is
promising and the development will continue to address

• Coalescence from non-prompt (resonances) antinucleons
• Source size from generator and/or constrained on data
• Predictions of #d yield at low collision energy
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3.1 Antideuterons from prompt nucleons
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Pythia8: simple coalescence
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Pythia8: Wigner (WF: Single Gaussian)
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Pythia8: Wigner (WF: Single Gaussian)
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Pythia8: Wigner (WF: Single Gaussian)
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3.2 Comparison to “simple coalescence” 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
)c (GeV/A/

T
p 

0.2

0.25

0.3

0.35

0.4)c
 (G

eV
/

0p 

, pp (INEL)2B from ALICE 
0

p: d

 = 900 GeVs  = 7 TeVs

 = 13 TeV INEL>0s

𝐵! =
𝑚"
𝑚#𝑚$

𝜋𝑝%&

6

The Wigner approach results in a more 
accurate description of the pT spectrum
shape than obtained with the simplest
coalescence condition

𝑝𝑛 − 𝑝𝑝 < 𝑝0
with 𝑝0 extracted
from ALICE data[5].

The antideuteron spectra are obtained
for various √s and compared to data:
• pT shape described
• sensitivity to different &d wave

functions (bands: single-Gaussian, double-Gaussian
fitted to realistic Hulthén wave-function[9])


