Coalescence afterburner for antinuclei production

iIn hadronic collisions with input from PYTHIAS
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1. Cosmlc antlnuclel as smoking guns for dark matter

Ind|rect searches for dark matter with space-based experiments!'! look for Standard

Model particles (e.g. e*, p) coming from the annihilation of dark matter WIMPs in the
Galactic halo.

The detection of cosmic antideuterons (d) and antihelium nuclel (*He, *He) is a promising
smoking gun signaturel?) because of the low background coming from secondary cosmic
rays (CR), i.e. from hadronic interactions of primary CR with the interstellar matter (PP, P-

He...) In the Galaxy. .
“ '« One key ingredient for the prediction of signal g

-~ and background rates is the modelling of the —

~ formation mechanism!3! of antimatter clusters. b, Secondary CR
. >Antinuclei formation via coalescence of = d from DIV _
antinucleons, constrained by measurements s g
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Coalescence pgy= 248 MeV/c T/n [GeV/n]
Uncertainty bands: propagation model
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3. Results trom the afterburner = . gz

3.1 Antideuterons from prompt nucleons

2.1 Antinucleons from PYTHIAS.3 The antideuteron spectra are obtained

tuned to LHC data or e for various Vs and compared to data:

< : emee © prshapedescribed -
PYTHIAS.34!'is tuned to reproduce = Pytiae: Tune 4 GR mode 2 (modified + sensitivity to different d wave |
the pT diStribUtionS Of p and I_) functions (bands: single-Gaussian,-double-Gaussian

s, i fitted to realistic Hulthén wave-function(®)
measured by ALICE in inelastic pp
collisions at LHC energiesl>®l.

op Vs =900 GeV, lyl <0.5

d O ALICE : Phys. Rev. C97 (2018) 024615
— Pythia8: Wigner (WF: Single Gaussian)
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(1/N) d2N/(dedy) [(GeV/c)'

—
<

Data/Model

pp Vs=7TeV, lyl<0.5

d O ALICE : Phys. Rev. C97 (2018) 024615
[ pythias: Wigner (WF: Single Gaussian)
[ ythias: wigner (WF: Double Gau  fit)
[[] pythias: wigner (WF: Double Gaussian-cbo fit
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This choice Is driven by the
availablility of precise and copious
antideuterondata from ALICE,
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pp Vs =13 TeV (INEL>0), lyl < 0.5
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B ALICE, p+p, pp Vs =7 TeV

T

not available at the energies .
mostly relevant for cosmic rays,
\/s ~ 10-25 GeV.

— Pythia8: p+p

(1/N) d®N/(dp_dy) [(GeV/c) T

— Pythia8: p

— Pythia8: p

(1/N) d®N/(dp_dy) [(GeV/c) ]

In PYTHIA p (p) and n (n) are
produced in the.same amount and
-with the same p;-distributions.

Data/Model

Data/Model

0.8 1 1.2 1.4 1.6 1.8 2
P, (GeV/ce)

45 5
P, (GeV/c)

3.2 Comparison to “simple coalescence”

: > o - pp (s=7TeV, lyl<0.5
The Wigner approach results in a more

accurate description of the p; spectrum
e shape than obtained with the S|mplest
coalescence condition

,".2.2 Coalescence based on state-of-the-art | ~ LG
Wigner function approach
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The formation of a d by coalescence is the
result of final state interactions!’ ¢l between a

D, — Pyl < Po
A 0 ——D ¥ & P X : , g
pandan. P % P with p, extracted s -
. . o S beom oA from ALICE datal. :
: The coalescence probability is given-by the Sourct, WM e
overlap of the nucleus and the nucleon wave . RS G pee
lTctions andicEuEt . d 4. Conclusions and next steps
» the momentum _ h
. the size of the nucleon source The current implementation, for prompt antinucleons, is
.. the nucleus wavefunction promising and the development will continue to address ,
‘We compute this probability, w, event by beoun xam +"_Coalescence from non-prompt (resonances) antinucleons &
event and for each possible (p, n) pair Sourt - Source'size from generator and/or constrained on data
following the approach in [9] "4 » Predictions of d.yield at low collision energy
E.g. For a d single-Gaussian wf. | | ! p ,':' o = c ' o
g g 7 3/2 T : s ) References ‘
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