Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO

Presented by Yiyu Zhang on behalf of JUNO Collaboration Institute of High Energy Physics, CAS, China

- Neutral-current (NC) interactions of atm. neutrino with ¹²C in LS is the most significant background source in the DSNB study
 - Methods of model prediction from Phys.Rev.D103 (2021) 5, 053001
 - Two widely-used neutrino generators **GENIE** and **NuWro** are used to model the interactions
 - Add deexcitation and delayed decay processes of the residual nuclei
- **Fast neutron**: generated by muon spallation in the rock surrounding the detector; higher at the surface of the CD. Two fiducial volumes: FV1 and FV2
 - FV1 (inner region)
 - (outer region)
 - Background suppression strategies are different in FV1 and FV2
- Other backgrounds: intrinsic IBD events from reactor and atmospheric $\bar{\nu}_e$, and cosmogenic ⁹Li/ ⁸He

Signal/Background (S/B) ratio in observation window (12-30 MeV):

Rate (/(10 yrs))		w/o ES	w/ ES
FV1	DSNB	20.8	15.6
	Backgrounds	459.4	3.5
	S/B ratio	0.045	4.46
FV2	DSNB	5.0	3.6
	Backgrounds	136.5	1.9
	S/B ratio	0.027	2.0

Spectral fit is applied, using the Poisson likelihood function

nominal model

15

Based on arXiv: 2205.08830

V. Background suppression (Event selection)

- 1. muon veto cut in FV1 and FV2
- powerful tool to suppress atmospheric NC and fast neutron backgrounds
- Based on time profiles of different particles in LS

- unstable ¹¹C nucleus
- third delayed signal and the first prompt one

VII. DSNB sensitivity: exclusion limits

VIII. Conclusions

The PSD technique and TC cut can effectively suppress the NC background and achieve promising discovery potential. • The DSNB discovery potential can be achieved 3σ after 3 years data taking and better than 5σ after 10 years for the nominal DSNB model. Even for the pessimistic scenario with non-observation, JUNO would strongly improve the latest best limits and exclude a significant region of the model parameter space.

■ JUNO will start in 2023, enable a bright future of the DSNB physics within the next decade.

2. pulse shape discrimination (PSD) – in FV1 and FV2