

There are a large number of experiments investigating both neutrino theoretically investir interactions. In both cases, it is important to scattering processes are neutrino scattering on various targets $[1,2]$, since processes of neutrino scattering on ardeon or a nucleus studied in this work contribute to the signals of such experiments as MiniBooNE $[3]$ COHERENT $[4,5]$ and registration of supernova neutrinos in JUNO $[6]$; or a tool for studying fundamental interactions of neutrinos: in this
work the contribution of the electromagnetic properties of neutrinos is studied. The latter neutrino procerties emerge in different extensions of the Standard Model, and they include [7]: millicharges and charge radii, Cros sections of
nucleons and nuclei
originates from a source (reactor, accelerator, the Sun, etc) and elastically scatters on a nucleon (nucleus) in a detector at energy-momentum transfer
$q=(T, \mathbf{q})$. If the neutrino is born in the source in the flavor state $\left|\nu_{\ell}\right\rangle$, then its state in the detector is $\left|\nu_{\ell}(L)\right\rangle=\sum_{k=1}^{3} U_{\ell k}^{*} \exp \left(-i \frac{m_{k}^{2}}{2 E_{\nu}} \mathcal{L}\right)\left|\nu_{k}\right\rangle$, where $\mathcal{L}$ is the source-detector distance. We assume the target nucleon
(nucleus) to be free and at rest in the lab frame. The matrix element of or a nucleus, due to weak interaction is given by

, $j_{j, \mathcal{N}^{\prime}}\left(k^{j}\right) \gamma^{0}$, where $u_{j, \lambda}(k)$ is the bispinor amplitude of the massive
eutrino state $\left\langle\nu_{j}\right\rangle$ with 4 -momentum $k$ and spin state $\lambda$. The matrix ent due to electromagnetic interaction is

where $J_{\mu}^{(E M)}$ is the electromagnetic current of the nucleon (nucleus)

${ }_{(q)}$ and $\Lambda_{\lambda}^{(\mathrm{EM} ; N)}{ }_{(-q)}$ are nucleon neutral weak and ectromagnetic vertexes, respectively. $\Lambda_{j k}^{(\mathrm{EM} ; \nu) \mu}(q)$ is the electromagnetic neutrino vertex. We consider the following vertexes:
 $\Lambda_{\mu}^{(\mathbb{E N} ; N)}(q)=\gamma_{\mu} F_{Q}^{N}\left(q^{2}\right)-\frac{i}{2 m_{N}} \sigma_{\mu q q^{2}} F_{M}^{N}\left(q^{2}\right)$

$$
+\frac{1}{2 m_{N}} \sigma_{\mu \mu} q^{\gamma} \gamma_{5} F_{E}^{N}\left(q^{2}\right)-\left(q^{2} \gamma_{\mu}-q_{\mu} q\right) \gamma_{5} \frac{F_{A}^{N}\left(q^{2}\right)}{\left.2 m_{N}\right)^{2}},
$$

$\wedge_{\mu}^{(N ; C ; N)}(q)=\gamma_{\mu} F_{1}^{N}\left(q^{2}\right)-\frac{i}{2 m_{N}} \sigma_{\mu} q^{\nu} F_{2}^{N}\left(q^{2}\right)-\gamma_{\mu} \gamma_{S} G_{A}^{N}\left(q^{2}\right)+\frac{1}{m_{N}} G_{P}^{N}\left(q^{2}\right) q_{\mu} \gamma_{5}$.
Assuming the target to be a free nucleus, the nuclear currents can be
 is the nuclear mass, and
$\mathcal{F}_{1}(\vec{q})=\frac{1}{(2 \pi)^{3}} \int d^{3} r e^{i \vec{T} T}\left\langle n, J, M_{j}^{\prime}\right| \sum_{k=0}^{Z+N} g_{V}^{N_{V}()^{3}\left(\vec{r}-\vec{r}_{k}|n, J, M J\rangle\right.}$

$F_{Q}(\vec{q})=\frac{1}{(2 \pi)^{3}} \int d^{3} r e^{i \vec{T} \vec{r}}\left\langle n, J, M_{j}^{\prime}\right| \sum_{k=0} \delta^{3}\left(\vec{r}-\vec{r}_{k}\right)\left|n, J, M_{J}\right\rangle$.

When evaluating the cross section, we neglect the neutrino masses. Since
the final massive state of the neutrino is not resolved in the detector, the differential cross section measured in the scattering experiment is given by

$$
\frac{d \sigma}{d T}=\frac{|\mathcal{M}|^{2}}{32 \pi E_{\nu}^{2} m_{N}},
$$

with the following absolute matrix element squared:

$$
\begin{equation*}
|\mathcal{M}|^{2}=\sum_{j=1}^{3}\left|\mathcal{M}_{j}^{(w)}+\mathcal{M}_{j}^{(\gamma)}\right|^{2}, \tag{8}
\end{equation*}
$$

where averaging over initial and summing over final spin polarizations is
assumed. The differential cross section can be presented as a sum of the helicity-preserving (hp) and helicity-flipping (hf) parts: $\frac{d \sigma}{d T}=\frac{d \sigma_{\mathrm{hp}}}{d T}+\frac{d \sigma_{\mathrm{h}}}{T}$. The cross section for neutrino-nucleon scattering is
$\frac{d \sigma_{h p}}{d T}=\frac{G_{F}^{2} m_{N}}{2 \pi}\left[\left(C_{V}-2 \operatorname{Re} C_{V \& A}+C_{A}\right)+\left(C_{V}+2 \operatorname{Re} C_{V \& A}+C_{A}\right)\left(1-\frac{T}{E_{V}}\right)\right.$
$+\left(C_{A}-C_{V}\right) \frac{m_{N} T}{E_{\nu}^{2}}+C_{M} \frac{T}{2 m_{N}}\left(2+\frac{m_{N} T}{E_{\nu}^{2}}-\frac{2 T}{E_{\nu}}\right)-C_{E} \frac{T}{2 m_{N}}\left(2-\frac{m_{N} T}{E_{\nu}^{2}}-\frac{2 T}{E_{\nu}}\right)$
$\left.+2 \frac{T}{\overline{E_{\nu}}} \operatorname{Re} C_{A \& M}\left(2-\frac{T}{E_{\nu}}\right)-2 \operatorname{Re} C_{V \& M} \frac{T^{2}}{E_{\nu}^{2}}\right]$
$\frac{d \sigma_{h f}}{d T}=\frac{\pi \alpha^{2}}{m_{e}^{2}}\left|\mu_{\nu}\left(\mathcal{L}, E_{\nu}\right)\right|^{2}\left[\left(\frac{1}{T}-\frac{1}{E_{\nu}}\right) F_{Q}^{2}+\left(\frac{1}{T}-\frac{1}{E_{\nu}}-\frac{m_{N}}{2 E_{\nu}^{2}}\right) \frac{T^{2}}{4 m_{N}^{2}} F_{A}^{2}\right.$
$\left.-\frac{T}{2 E_{\nu}^{L}} F_{Q} F_{M}+\frac{\left(2-\frac{T}{E_{L}}\right)^{2}-\frac{2 m_{V} T}{E_{\dot{L}}^{2}}}{8 m_{N}} F_{M}^{2}-\frac{\left(2-\frac{T}{E_{\nu}}\right)^{2}}{8 m_{N}} F_{B}^{2}+\frac{\left(2-\frac{T}{\left.E_{N}\right)} T\right.}{4 E_{\nu} m_{N}} F_{A}\left(F_{M}-F_{Q}\right)\right]$ where [1]







The cross section for neutrino-nucleus scattering is


3 Numerical results
Here we present numerical calculations for neutrino-nucleon and neutrino-
nucleus nucleus scattering. We restrict ourselves to the case of charge and magnetic
electromagnetic form factors of a nucleon, accounting for the relation electromagnetic form factors of a nucleon, accounting for the relation
between the nucleon neutral weak and electromgnetic form foct the nucleon neutral weak and ele enagetic form facto

$$
\begin{aligned}
& F_{1,2}^{p}\left(q^{2}\right)=\left(\frac{1}{2}-2 \sin ^{2} \theta_{W}\right) F_{Q, M}^{p}\left(q^{2}\right)-1 \frac{1}{2} F_{Q, M}^{n}\left(q^{2}\right)-\frac{1}{2} F_{1,2}^{s}\left(q^{2}\right), \\
& F_{l, 2}^{n}\left(q^{2}\right)=\left(\frac{1}{2}-2 \sin ^{2} \theta_{W}\right) F_{Q, M}^{n}\left(q^{2}\right)-1 \frac{1}{2} F_{Q, M}^{n}\left(q^{2}\right)-\frac{1}{2} F_{, 2,( }^{S}\left(q^{2}\right), \\
& \begin{aligned}
F_{1,2}^{n}\left(q^{2}\right) & =\left(\frac{1}{2}-2 \sin ^{2} \theta_{W}\right) F_{Q, M}^{n}\left(q^{2}\right) \\
G_{A, p}^{N}\left(q^{2}\right) & =\frac{\tau_{G}}{2} G_{A, p}^{A}\left(q^{2}\right)-\frac{1}{2} G_{A, p}^{S}\left(q^{2}\right),
\end{aligned}
\end{aligned}
$$

where $F_{1,2}^{S}, G_{A, P}^{S}$ are strange form factors of the nucleon. We use the parameterization that can be found in $[8]$ (and references therein). We
present the numerical results for a zero source-detector distance, with present the numerical results for a zero source-detector distance, with
and without strange form-factor contribution, with and without neutrino charge radii (Figs. 1 and 2), with and without diagonal neutrino magnetic moments (Fig. 3).

## $\underbrace{\substack{20}}_{0}$ <br>  <br>  <br> $$
\left\langle\left(r^{2}\right)_{e}+3 \times 3 \times 10^{-1}\right.
$$

## 

Figure 1: The differential cross sections of neutrino scattering on (a) a proton and (b) a neutron at $E_{\nu}=1 \mathrm{GeV}$


Figure 2: The differential cross sections of neutrino scattering on (a) a proton and (b) a neutron at $E_{\nu}=10 \mathrm{Me}$.


$\qquad$


Figure 3: The differential cross sections of neutrin sesterin an (a) $a$ ind a neutron
moments.
For the neutrino-nucleus case we chose ${ }^{40} \mathrm{Ar}$ as a target [9] with parametrization of nuclear form factors that can be found in [10] (and distance, with and without transition neutrino charge radii (Fig. 4), with

## $\cdots$

0
Fine (a)
Figure
rransition transtion neutrino charge radii, at $E_{\nu}$ values of (a) 10 MeV , (b) 30 MeV , and (c)
Mev.


Figure 5: The differential cross section
neutrino scattering on ${ }^{4}$ Ar with accour leutrino scattering on "A. with accou

## -s"

## 4 Summary

Elastic scattering of neutrinos by a nucleon and a nucleus been considered theoretically, taking into account the electromagne
interactions of massive neutrinos. Thus, the processes under considert have two channels: through the exchange of a $Z$ boson and a photon both cases, the nucleon and nuclear form factors are taken into account. In addition, neutrino osciliations on the source-detector base are taken into account.
The formulas obtained contain information about both neutrino electromagnetic form factors and nucleon and nuclear form factors. This feature alfows the formulas to be used in various stelies. the study
are neutrino experiments with short and long baselines, neutrino interactions and oscillations in matter, registration of neutrinos from supernova explosions using elastic neutrino-proton scattering [6], the study of the anapole moment of the nucleon, the search for thi electric dipole moment of the neutron, the search for the electromagnetic characteristics of neutrinos. We have perforned inerical calcuations F neutrino energies reley
(Fig.4,5) experiments.
The results of this work contribute to the development of a systematic approach to studying the properties of neutrinos in their elastic scattering on complex targets (nuclei, atoms, condensed matter).
The work is done within the programme of the Interdisciplinary Scientific and Educational School of Moscow University "Fundamental and Applie Space Research" and is supported by

## References

[1] Kouzakov K. A., Studenikin A. I. Phys. Rev. D 96, 099904 (2017)
[2] Kouzakov K., Lazarev F., Studenikin A., PoS (ICHEP2020) 203.
[3] Tayloe R. et al. Nucl. Phys. B-Proc. Suppl. 118 (2003): 157-163. [4] Akimov D. et al. Science 357.6356 (2017): 1123-1126.
[5] Cadeddu, M., Giunti, C.. Kouzakov, K. A., Li, Y.F., Studenikin, A. I., Zhang
Y. Y. Phys. Rev. D. $98(11)$, 113010 (2018). Y. Y. Phys. Rev. D, $98(11)$, 113010 (2018)
al. J. Phys. G: Nucl. Part. Phys. 43.3 (2016): 030401
[7] Giunti C., Studenikin A. Rev. Mod. Phys. 87,531 (2015), arXiv:1403.6344. [8] Papoulias D. K., Kosmas T. S. Adv. High En. Phys. 2016 (2016)
[9] Miranda, O., Papoulias, D., Garcia, G.S. et al. J. High Energ. Phys. 2020, 130 [10] Tomalak O. et al. Journal of High Energy Physics 2021.2 (2021): 1-42.

