Neutrino effective Hamiltonian

We describe neutrino flavour, spin and spin-flavour oscillations engendered by neutrino inter-
actions with an external electric current due to neutrino charge radii and anapole moments. We
consider two flavour neutrinos with two possible helicities v = (ve , vy, vg, vy ) and perform cal-
culations that are analogous to those in [1, 2, 3]. In the mass basis the neutrino effective potential
describing electromagnetic interactions of the neutrino field v with the external electric current is

given by
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where ¢ = p; — py, p; and py are the initial and final neutrino momenta, 7" is the normalization
time. The matrix element
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is dertermined by the electric current of the external charged fermions f (the protons or electrons),

Ty = e(n f-nsv ). Note that A[Li in (2) contains the corresponding terms of the neutrino electro-
magnetic vertex (for its decomposition see [4]). We are interested only in the electric charge and
anapole form factors
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where fg(qz) and f ﬁi(qz) are charge and anapole form factors in the mass basis. The neutrino

charge radius is determined by the second term in the expansion of the neutrino charge form
factor
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and the charge radius is given by
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We consider the case of zero neutrino millicharge f(0) = 0. Therefore, the electromagnetic vertex
accounted for the charge radius and the anapole form factors reads
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This vertex gives the following effective interaction Hamiltonian
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The neutrino initial and final states are given by
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where y") defines the neutrino helicity state Y =0 0l and =) = (0 DT

into equation (7) we get
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where J ” M is the longitudinal (in respect to z-axis of the neutrino propagation) electric current

and J EM is the transversal component of the ccurrent,  is the angle between the fixed z-axis that
is perpendicular to z-axis. The gamma factors are given by

—1  Ma 1

Ta© = o aﬁ—l(v@ +75) N(;ﬁl—l(% 75_1)- (10)

Now consider contribution of the longitudinal J H M and the transversal J f M components of the

electric current separately.
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The longitudinal current J i M contribution
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In the flavour basis v = (vg', vy, v ) for the corresponding part of the interaction Hamiltonian
we get
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It can be seen that the neutrino interaction with the longitudinal current J ” M modifies the neu-

trino flavour oscillations.
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The transversal current contribution

In the flavour basis for the corresponding part of the interaction Hamiltonian we get
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From these expressions it follows that the neutrino charge radius and anapole moment interac-
tions with the transversal electric current can generate neutrino spin and spin-flavour oscillations.

Neutrino interaction Hamiltonian in matter and external mag-
netic field

Neutrino also interacts with moving media and interacts with external magnetic field though
neutrino magnetic moment. From weak interaction with moving matter one gets (see [2])
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where 1, and n. are the neutron and electron density profiles, v = v 4 v is the matter velocity
and n cos’f  sin?f n sin?@  cos® @ n sin 260
() o (3 () e
Y/ ee Y11 22 Y/ i 711 22 Y/ ex 21

The Hamiltonian that accounts for the neutrino magnetic moment interaction with two compo-
nents of an external magnetic field B = B)| + B, reads
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where ¢ is the angle between v | and B |. The components of the effective magnetic moment in
the flavour basis p,, 3 are expressed through the components 1;; in the mass basis
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In derivations of the neutrino oscillations probabilities we take into account all interaction Hamil-
tonians and also the vacuum Hamiltonian.

Neutrino oscillations in astrophysical environment accounting for neutrino charge radius and anapole moment ‘
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Neutrino spin oscillations v/ < 1/

Consider two neutrino states with different helicities: (VeL :

lations are governed by the evolution equation

i< (”f ) [ (Fene—n) (1-u) Zhenc—nes (2) T (4). 81 e -
2 (v = |
di\V: 2\/_<2ne — nn)”L (Z)ee 0 —,LLGBBLB_W — (%) y BH
—2J M fee 2J M (f—A) e | L
+< “ | V) e <ﬁ?)' (20)

2JEM (L) e 2N p

v?). The corresponding neutrino oscil-

For the oscillation v < v!* probability we get
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where Eg ff and Az fyare expressed in terms of the elements H;; of the Hamiltonian:
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It follows that whereas the spin oscillations can be generated by the neutrino anapole moment in-
teractions with an external electric current, the interaction due to the charge radius does not pro-
duce the spin oscillations. Thus, these peculiarities can be used for disintegration of the anapole
moment and charge radius effects in neutrino interactions.
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Neutrino spin-flavour oscillations v < /!

Now consider two neutrino flavour states with two different helicities: (v%, v ).
ing neutrino oscillations are governed by the evolution equation
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For the case of the neutrino oscillations v,

The correspond-

+ vl the probability is again given by (21) with
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Contrary to the previous case, these expressions depend on both the neutrino anapole moment
and the charge radius.
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