Improved measurements of timing and optical properties of the JUNO liquid scintillator with SHELDON

Federico Ferraro^{1,2}, Marco Beretta¹

on behalf of the SHELDON research team

¹ Università degli Studi di Milano, Dipartimento di Fisica, Milano, Italy ² INFN, Sezione di Milano, Milano, Italy

☑ federico.ferraro@mi.infn.it

Introduction

EXAMPLE 2022 BOLOGNA

JUNO (Jiangmen Underground Neutrino Observatory) is a multipurpose liquid scintillator detector [1, 2]

Site: Kaiping laboratory (China), 700 m underground, 53 km distant from two nuclear power plants

Physics goals: Neutrino Mass Ordering, solar neutrinos, supernova neutrinos, geoneutrinos, atmospheric neutrinos,

Scintillation light is isotropic and does not provide any information on direction. A few Cherenkov light is emitted, potentially providing information on the **neutrino direction**. Cherenkov light also introduces nonlinearities in the energy **response** and affects the **energy resolution** of the detector.

SHELDON (Separation of CHErenkov Light for Directionality **Of N**eutrinos) is a small-scale setup to study the scintillator

proton decay

Detector: 20 kton of organic liquid scintillator (LAB + 2.5 g/L) PPO + 3 mg/L bisMSB) in acrylic vessel, more than 40000 PMTs. High light yield, transparency and radiopurity.

mixture that is going to be used in JUNO.

SHELDON has 2 goals:

Method

measurement of **fluorescence** parameters (as in ref. [3]) measurement of **Cherenkov** light yield (as in ref [4])

Setup

- The likelyhood fit includes: Cherenkov
 Fluorescence
 First component
 Second component
 Third component - 4 exp. contributions (rise+decay) - Cherenkov contribution - Impulse Response Function HL-PMT strongly coupled $F_{tot}(t) = N\left(f_{Ch}\,\delta(t-t_0) + (1-f_{Ch})\,\sum_{d=1}^{4} \frac{q_d}{\tau_d - \tau_r} \left(e^{-t/\tau_d} - e^{-t/\tau_r}\right)\right) * \text{IRF}(t)$ LL-PMT Scintillator (weakly coupled) sample 20 $\sin = 4.38$ $\mu = 4.38$ $\sigma = 0.04$ MC study to assess the uncertainty 5GS/s, 1.4 GHz, 10 bit related to the fitting procedure LabVIEW and validate the analysis method.
- scintillator cuvette provided with pipes for N2 bubbling
- 2 PMTs (strongly and weakly coupled to the scintillator)
- Time-Correlated Single Photon Counting technique [5]
- optical filters (neutral+"colored")
- 1600 ns long acquisition window
- sampling rate of 5 GS/s each ch.
- software CFD (to reduce jitter)
- LabVIEW DAQ software

Measurements

Fluorescence parameters

We measured the time distribution of emitted light with $\alpha/\beta/p$ sources. The fit includes a background contribution due to muons and the Cherenkov contribution (when present).

Separation of Cherenkov light

We measured the scintillator emission spectrum and the time distribution of emitted light at different wavelengths to study the timing features of Cherenkov and scintillation light

These measurements will improve **Pulse Shape Discrimination** (PSD), which is fundamental to reject the background in JUNO.

These measurement will improve the understanding of the energy response and will refine reconstruction performances

Next steps

- include the measured scintillation parameters in the official JUNO MC code (SNIPER)
- measure the refractive index of the LS in the UV spectrum to better model Cherenkov emission
- measure the group velocity of UV light in the LS to improve position reconstruction further

JUNO overview talks @ ICHEP

JUNO's physics prospects Jie Cheng, 8 Jul 2022, 15:15

The JUNO detector: design concept and status Alessandra Carlotta Re, 8 Jul 2022, 15:30

References

[1] Fengpeng An *et al* 2016 *J. Phys. G: Nucl. Part. Phys.* **43** 030401 [2] Progress in Particle and Nuclear Physics, 2022, 123, 103927 [3] Lombardi, P. et al 2012 Nuclear Instruments and Methods in Physics Research A 701 (2013) 133–144134

[4] T. Kaptanoglu et al 2019 JINST 14 T05001 [5] L. M. Bollinger and G. E. Thomas *Review of Scientific Instruments* 32, 1044-1050 (1961)