

1. Daya Bay Experiment [1]

The Daya Bay Experiment provides precise measurement of reactor anti-neutrino disappearance via Inverse Beta Decays (IBDs), and the IBDs are tagged by neutron capture on gadolinium (nGd) or on hydrogen (nH).

- 6 low enriched uranium (LEU) commercial reactors 2.9 GW thermal power.
- These reactors provide abundant electron-antineutrinos.

• IBD candidate selection [10]

	nGd	nH	
Basic	AD Trigger and flasher cut		
AD muon	$> 100 { m MeV}$		
AD muon veto	$(0, 800) \ \mu s$		
Pool muon [IWS, OWS]	$N_{\rm IWS PMT} > 12 \text{ or } N_{\rm OWS PMT} > 1$		
Pool muon veto	$(0, 600) \ \mu s$		
Shower muon	> 2.5 GeV		
Shower muon veto	(0, 1) s		
Coincidence time	$(1, 200) \ \mu s$ $(1, 400) \ \mu s$		
Delayed energy	$(6, 12) \mathrm{MeV}$	$\mathrm{Peak}\pm3\sigma_E$	
Coincidence distance	N/A	< 100 cm	
Prompt energy (basic)	N/A	$> 3.5 { m MeV}$	
Prompt energy (window)	Signal sea	rching region	

Prompt-energy spectra of the neutrino candidates

• Background

- In all possible cases, we used the realtime estimation, i.e. the result in ±5 days around a GW, for background estimation. But when the background is very low, we used the average of the entire data set.
- Average background rate (per second per antineutrino detector).

	EH1	EH2	EH3		
		nGd			
Low E	$(7.65\pm0.01) \times 10^{-3}$	$(6.82\pm0.01) \times 10^{-3}$	$(8.45\pm0.01)\times10^{-4}$		
High E	$(6.35\pm0.04) \times 10^{-5}$	$(4.32\pm0.04) \times 10^{-5}$	$(3.83\pm0.08) \times 10^{-6}$		
		nH			
Low E	$(28.75\pm0.04) \times 10^{-4}$	$(25.76 \pm 0.03) \times 10^{-4}$	$(3.25\pm0.01)\times10^{-4}$		
High E	$(9.20\pm0.05)\times10^{-5}$	$(6.30\pm0.05) \times 10^{-5}$	$(5.65 \pm 0.10) \times 10^{-6}$		

• High E : E > 10 MeV.

ICHEP 2022

Search For Electron-Antineutrinos Associated With Gravitational-Wave Events at Daya Bay

Huiyou Chen, Tsinghua University, China. On behalf of the Daya Bay collaboration

2. Gravitational-Wave Events

- The direct observation of gravitational waves (GWs) provides an important probe for investigating the dynamical origin of high-energy cosmic transients.
- Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.
- A list of GWs of interest for this study is listed [2-8].

GW events	Type of merged bodies	Detection time (UTC)	Distance D_{LIGO} (Mpc)
GW150914	Black holes	2015.09.14 09:50:45	410^{+160}_{-180}
GW151012	Black holes	2015.10.12 09:54:43	1100^{+500}_{-500}
GW151226	Black holes	2015.12.26 03:38:53	440^{+180}_{-190}
GW170104	Black holes	2017.01.04 10:11:58	880^{+450}_{-390}
GW170608	Black holes	2017.06.08 02:01:16	340^{+140}_{-140}
GW170814	Black holes	2017.08.14 10:30:43	540^{+130}_{-210}
GW170817	Neutron stars	2017.08.17 12:41:04	40_{-14}^{+8}

5,	each	with	

4. Data Analysis

Candidates and background comparison(result for GW150914 as an example)

		nGd Low E	nGd High E	nH Low E	nH High E
	Candidate	4	0	4	0
EH1-AD1	BKG. $(\pm 5 \text{ days})$	6.96 ± 0.08	0.060 ± 0.008	2.52 ± 0.06	0.080 ± 0.009
	BKG. (Averaged)	7.65 ± 0.01	0.064 ± 0.001	2.88 ± 0.01	0.092 ± 0.001
	Candidate	5	0	1	0
EH1-AD2	BKG. $(\pm 5 \text{ days})$	6.95 ± 0.08	0.054 ± 0.007	2.54 ± 0.05	0.072 ± 0.008
	BKG. (Averaged)	7.65 ± 0.01	0.064 ± 0.001	2.88 ± 0.01	0.092 ± 0.001
	Candidate	4	0	2	0
EH2-AD1	BKG. $(\pm 5 \text{ days})$	6.62 ± 0.08	0.037 ± 0.006	2.37 ± 0.05	0.041 ± 0.006
	BKG. (Averaged)	6.82 ± 0.01	0.043 ± 0.001	2.58 ± 0.01	0.063 ± 0.001
	Candidate	8	0	1	0
EH2-AD2	BKG. $(\pm 5 \text{ days})$	6.46 ± 0.08	0.027 ± 0.005	2.35 ± 0.05	0.056 ± 0.006
	BKG. (Averaged)	6.82 ± 0.01	0.043 ± 0.001	2.58 ± 0.01	0.063 ± 0.001
	Candidate	0	0	0	0
EH3-AD1	BKG. $(\pm 5 \text{ days})$	0.97 ± 0.03	0.004 ± 0.002	0.37 ± 0.02	0.008 ± 0.003
	BKG. (Averaged)	0.850 ± 0.001	0.0038 ± 0.0001	0.330 ± 0.001	0.0056 ± 0.0001
	Candidate	0	0	0	0
EH3-AD2	BKG. $(\pm 5 \text{ days})$	1.00 ± 0.03	0.003 ± 0.002	0.36 ± 0.02	0.007 ± 0.003
	BKG. (Averaged)	0.850 ± 0.001	0.0038 ± 0.0001	0.330 ± 0.001	0.0056 ± 0.0001
	Candidate	0	0	0	0
EH3-AD3	BKG. $(\pm 5 \text{ days})$	0.97 ± 0.03	0.001 ± 0.001	0.34 ± 0.02	0.004 ± 0.002
	BKG. (Averaged)	0.850 ± 0.001	0.0038 ± 0.0001	0.330 ± 0.001	0.0056 ± 0.0001
	Candidate	1	0	0	0
EH3-AD4	BKG. $(\pm 5 \text{ days})$	0.97 ± 0.03	0.007 ± 0.002	0.36 ± 0.02	0.005 ± 0.002
	BKG. (Averaged)	0.850 ± 0.001	0.0038 ± 0.0001	0.330 ± 0.001	0.0056 ± 0.0001

• In all cases, the number of candidates is consistent with the background number.

•	De
•	Th
	eff
	$\epsilon = \epsilon$
ϵ_{ot}	$_{ther} =$
•	ϵ_{μ}
•	ϵ_m
	eff
•	eve
-	
	cor
	ent
	n L
	CO1
	res

F. P. An et al 2021 Chinese Phys. C 45 055001

3. Neutrino Fluence Measurement Method

- events, $\pm 10 \, \text{s}$, $\pm 500 \, \text{s}$, $\pm 1000 \, \text{s}$.
- electron-antineutrino fluence is calculated as

 $\Phi_{\rm FD} = \frac{N_{\nu}}{N_p \int \sigma(E_{\nu}) \epsilon(E_{\nu}) \phi(E_{\nu}) dE_{\nu}}, \qquad \phi(E_{\nu}) = \frac{1}{T^3 F_2(\eta)} \frac{E_{\nu}^2}{e^{E_{\nu}/T - \eta} + 1},$ • Where N_p is the number of target protons, $\sigma(E_v)$ is the IBD cross-section and $\epsilon(E_{\nu})$ is the detector efficiency. • For the Monochromatic Spectra, $\Phi_{\rm D}(E_{\nu}) = \frac{N_{\nu}}{N_p \sigma(E_{\nu}) \epsilon(E_{\nu})}$

etection efficiency ne signal detection ficiency is defined as [10]

 $_{\mu} \cdot \epsilon_m \cdot \epsilon_{other}$

 $\sum_{v} (N_{p,v} \cdot \epsilon_{Ep,v} \cdot \epsilon_{Ed,v} \cdot \epsilon_{D,v} \cdot \epsilon_{T,v}) / \sum_{v} N_{p,v}$

muon veto efficiency. : the multiplicity cut ficiency for the two-fold ent selection.

 $\epsilon_{v,v}, \epsilon_{E_d,v}, \epsilon_{D,v}, \epsilon_{T,v}$ rrespond to the prompt ergy, delayed energy, incident distance (for the I sample only), and incident-time efficiency, spectively.

Fluence (×10 ¹⁰ cm ^{-2})	Monochromatic Spectra						Fermi-Dirac Spectrum		
$E_{ u}$	5 MeV	$7 { m MeV}$	$10 \mathrm{MeV}$	$20 {\rm MeV}$	$30 {\rm MeV}$	$50 { m MeV}$	$70 {\rm MeV}$	$90 {\rm MeV}$	$(1.8, 100) { m MeV}$
$\pm 10 \text{ s}$	11.3	4.7	1.6	0.55	0.25	0.10	0.05	0.02	0.70
$\pm 500 \text{ s}$	20.6	10.5	1.9	0.53	0.25	0.10	0.05	0.02	0.63
$\pm 1000 \text{ s}$	24.4	8.1	1.9	0.55	0.25	0.10	0.05	0.02	0.54

above below.

[2] B. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017) [3] B. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016) [4] B. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 122003 (2016) [5] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 241103 (2016) [6] B. P. Abbott et al. (LIGO Scientific, VIRGO), Phys. Rev. Lett. 118, 221101 (2017) [7] B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. 851, L35 (2017) [8] B. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 141101 (2017) [9] A. Gando et al. (KamLAND), Astrophys. J. 829, L34 (2016), [Erratum: Astrophys.J. 851, L22 (2017)] [10] F. P. An et al. (Daya Bay), Phys. Rev. D 95, 072006 (2017)

• We limited our search for $\overline{\nu}_e$ with energies below 100 MeV. • To accommodate the uncertainties, we adopted three time windows to search for neutrino bursts associated with the GW

• We first measured the electron-antineutrino fluence, Φ_{FD} , with a normalized, pinched Fermi-Dirac spectrum, with zero

chemical potential and a pinching factor of $\eta = 0$, as applied in the KamLAND experiment [9]. Using the number of electronantineutrino candidates N_{ν} within the searching window, the

5. Upper Limits on $\overline{\nu}_{e}$ Fluence

• Under two different neutrino spectrum assumptions, upper limits (90% C.L.) of fluence for three search time windows are listed

July 6-July 13, 2022