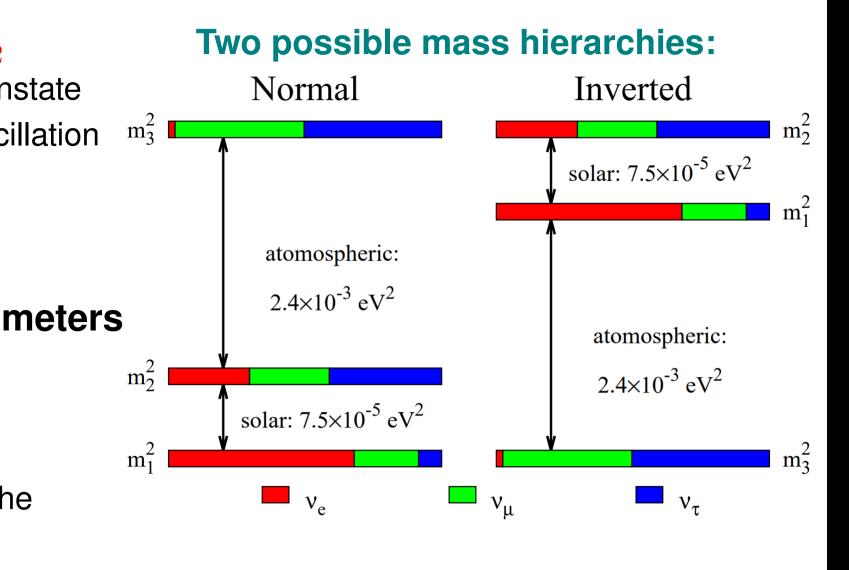


A Pure Probabilistic Approach to Event Reconstruction at JUNO

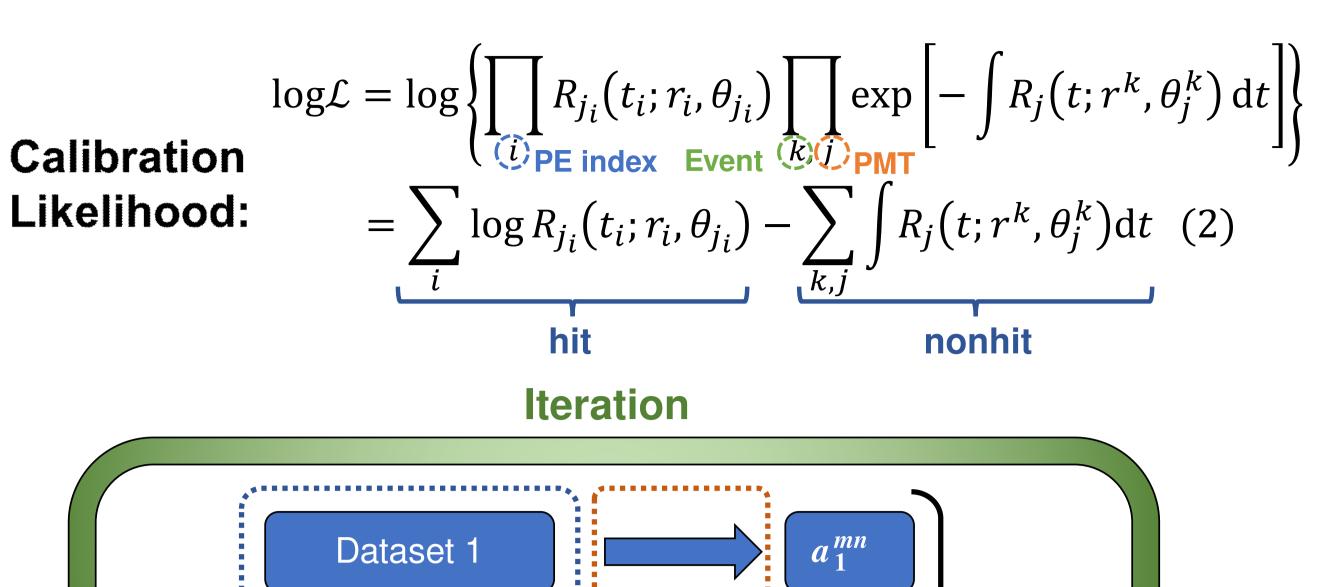
Xuewei Liu for JUNO Collaboration (Email: liuxw20@mails.tsinghua.edu.cn) Department of Engineering Physics, Tsinghua University Center for High Energy Physics, Tsinghua University

Background

Neutrino mass hierarchy relies on $\Delta m_{31}^2 \Delta m_{32}^2$ Normal hierarchy(NH) or inverted hierarchy(IH) for mass eigenstate \blacksquare (For JUNO) Medium baseline (~50 km) reactor antineutrino oscillation m_3^2 The determination of mass hierarchy is helpful for: $\nu_e \rightarrow \nu_e$ • defining the goal of neutrinoless double beta decay • measuring lepton CP-violating phase **Precision messurement of neutrino oscillation parameters** Model-independent way to probe new physics • test the standard three-flavor neutrino model e.g., test the unitarity of the MNSP matrix • narrow down the parameter space of the effective mass of the neutrino double beta decay



Calibrate *a^{mn}* of Response Function



Jiangmen Underground Neutrino Observatory(JUNO)

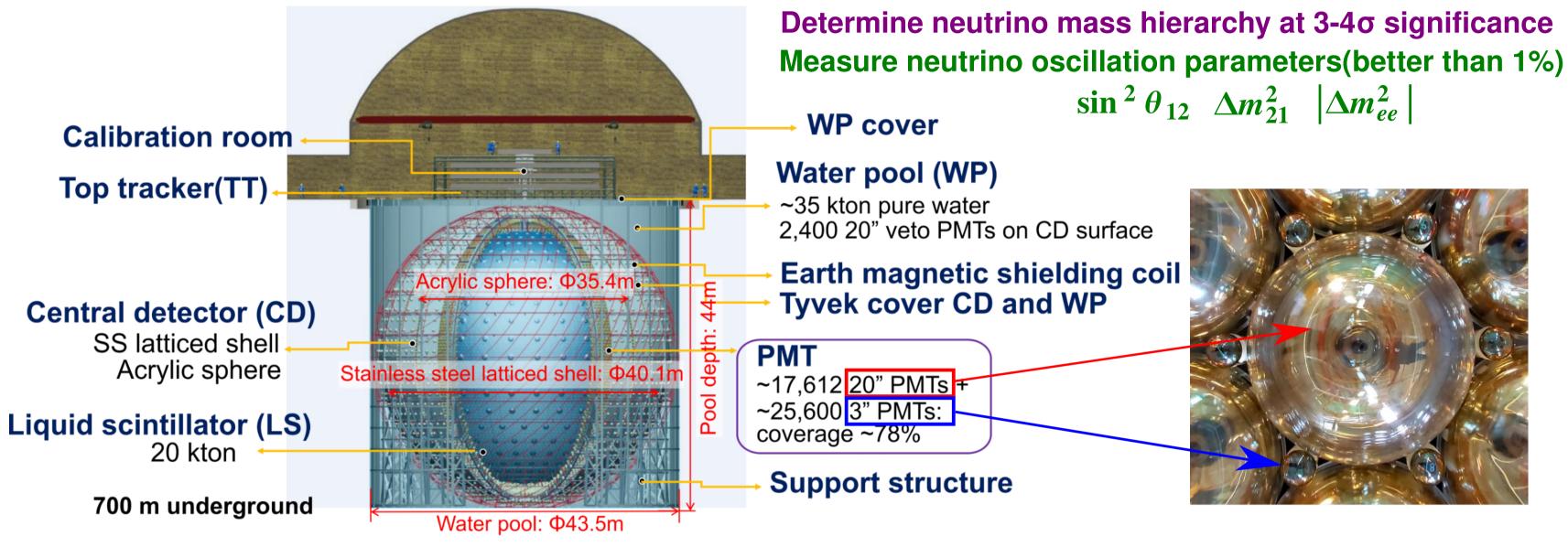


Figure 1: A scheme view of the JUNO detector(left) [1] and JUNO PMT(right)

Reconstruction methodology of point-source events

- considers dependence of scintillation light time response curve on PE(photoelectron) number
- pure probabilistic, deduced from first principles
- follows naturally from the time response curve and is **unbiased**

Problem Model

Rotationally symmetrical about the $0 - \vec{r}_i$ axis

PE number on PMT *j* follows nonhomogeneous Poisson process $C^{T+\Delta T}$ $R_j(t) \uparrow$

 $\lambda(t) =$

PE number: $n(t) \sim$

Application:

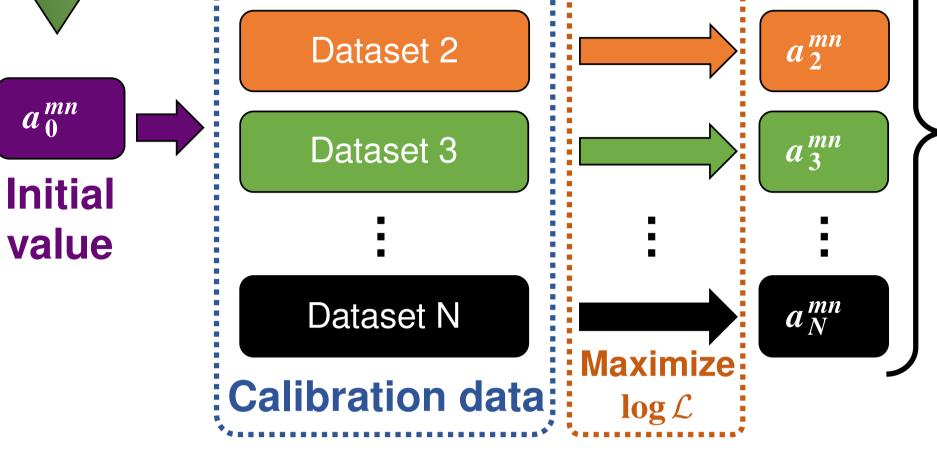
and charge readouts

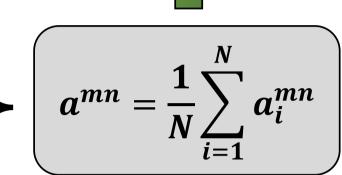
 $\lambda(t)^n e^{-\lambda(t)}$

JUNO 3-inch PMT

with **first PE time**

R(t) dt





Scored by (2), with independent validation dataset

80

100

Figure 6: Calibration workflow. Datasets are (currently) from JUNO Monte Carlo simulation.

Reconstruction Methodology

 $T_j \mid T_j + \Delta T$

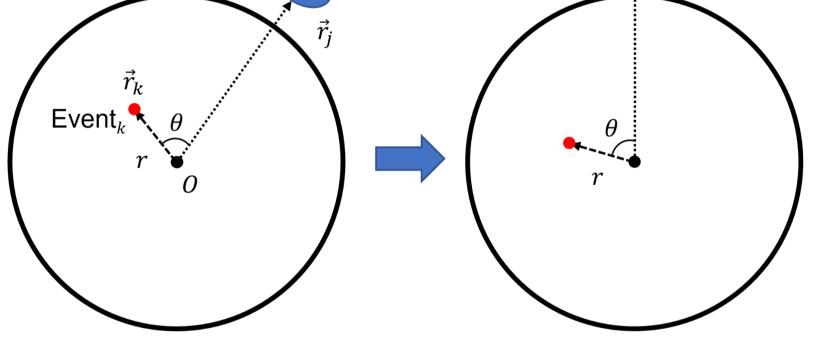
Consider the joint distribution of first PE time T_i and PE number N_i .

No PE in $(-\infty, T_j)$: $\exp\left(\int_{-\infty}^{T_j} R_j(t) dt\right)$

One PE in $(T_j, T_j + \Delta T)$: $\exp(-R_j(T_j)\Delta T)R_j(T_j)\Delta T$

 $(N_i - 1)!$

 $N_j - 1$ PEs in $(T_j + \Delta T, +\infty)$: $\exp\left(-\int_{T_j+\Delta T}^{+\infty}R_j(t)\mathrm{d}t\right)\left[\int_{T_j+\Delta T}^{+\infty}R_j(t)\mathrm{d}t\right]^{N_j-1}$



 $T = T + \Delta T$ Figure 3: PE number at T follows Poisson distribution $Pr(\lambda(T))$,

where $\lambda(T) = \int_{T}^{T+\Delta T} R(t) dt$.

Figure 2: Intuitively, we can rotate the detector so that PMT *j* is above.

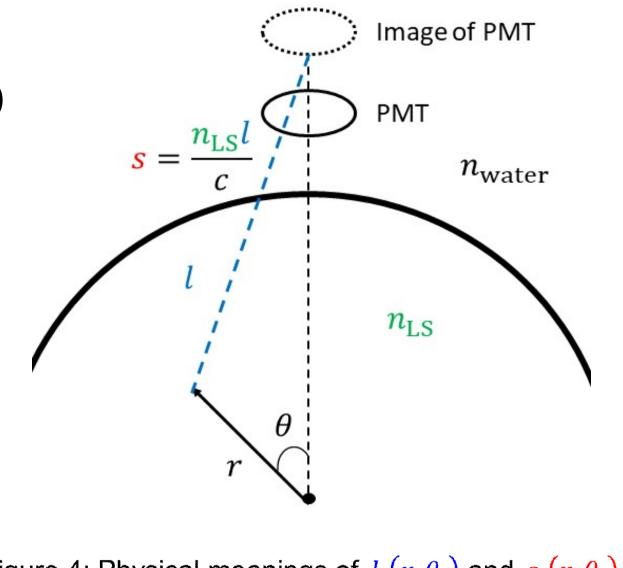
All PMTs are identical

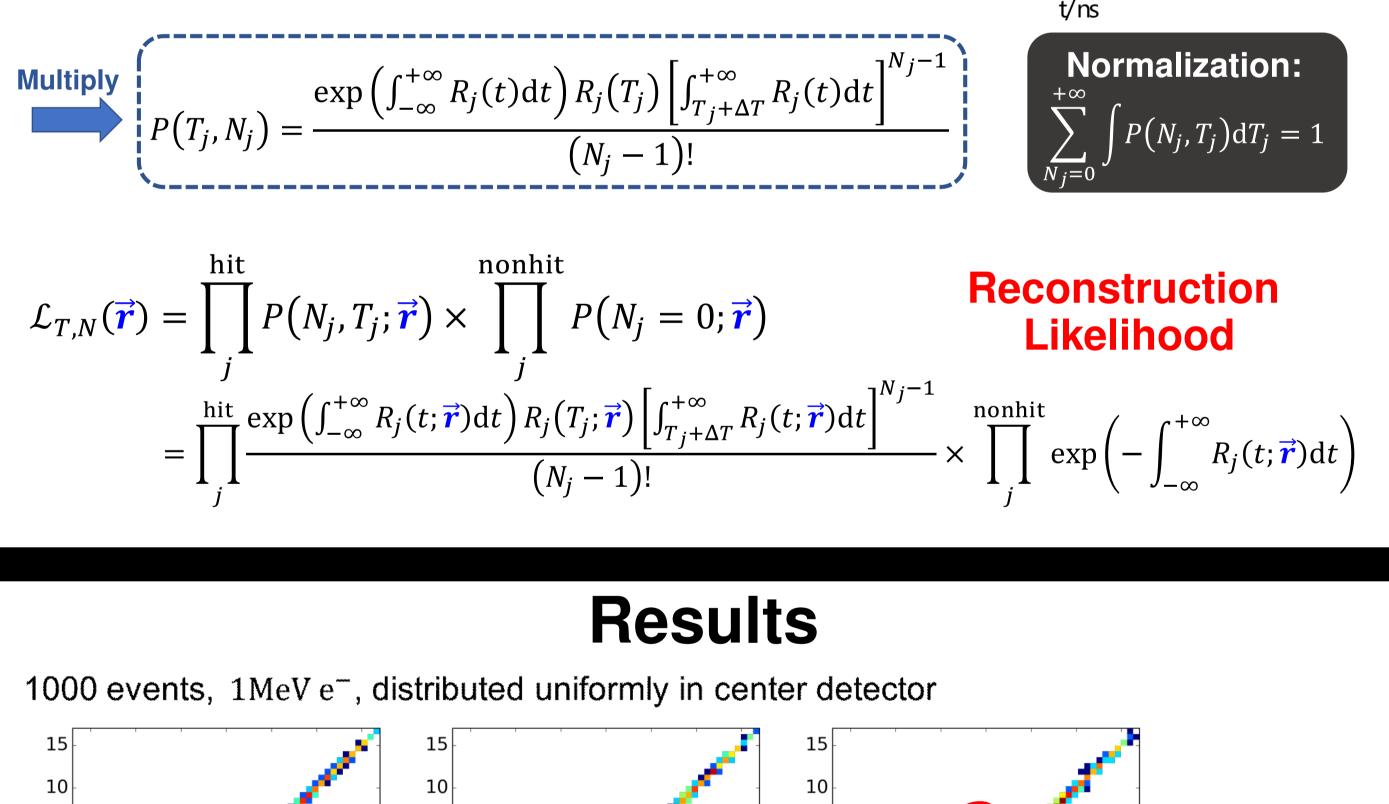
- \succ Ignore the difference of PMTs, such as geometry, quantum efficiency and so on.
- \succ Consider the difference in more elaborate fitting.

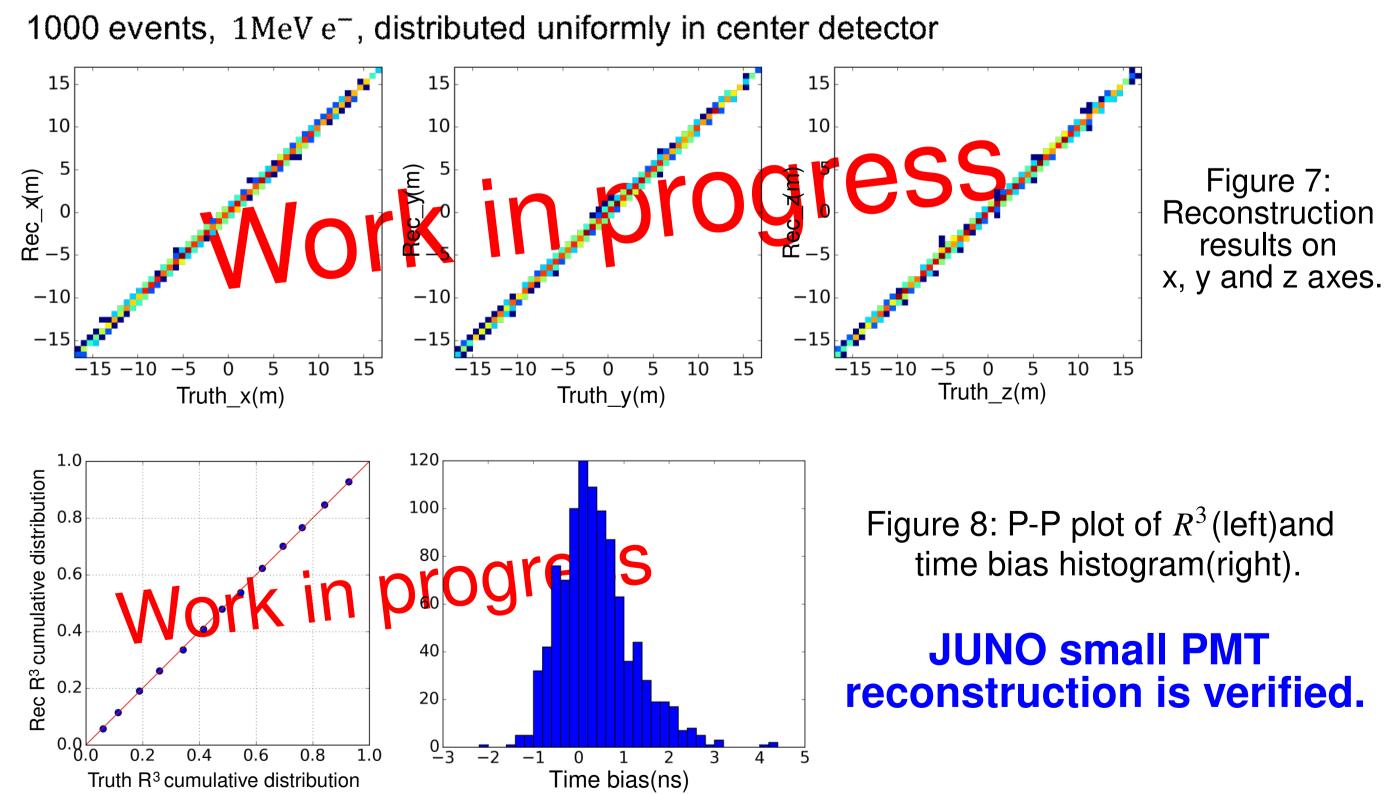
PMT Expected Response Function

- Defined as Poisson intensity $R_i(t; \vec{r}, E)$, for point source event $\delta(\vec{r}, E)$
- Energy linearity: $R_i(t; r, \theta_i, E) = ER_i(t; r, \theta_i)$

- t: PE time, mapped to (-1,1)
- r, θ : position of initial vertex relative of PMT *j*. *r* is mapped to (0,1)
- $P_m(t)$: *m* order Legendre polynomial
- $Z_n(r, \theta)$: *n* order Zernike polynomial
- *a^{mn}*: fitting coefficient







• $l_i(r, \theta_i)$: distance between initial vertex and image of PMT j • $s_j(r, \theta_j)$: flight time from initial vertex to image of PMT j

Reduce the difficulty of fitting and improve fitting accuracy

Figure 4: Physical meanings of $l_i(r, \theta_i)$ and $s_i(r, \theta_i)$

Response Function Examples

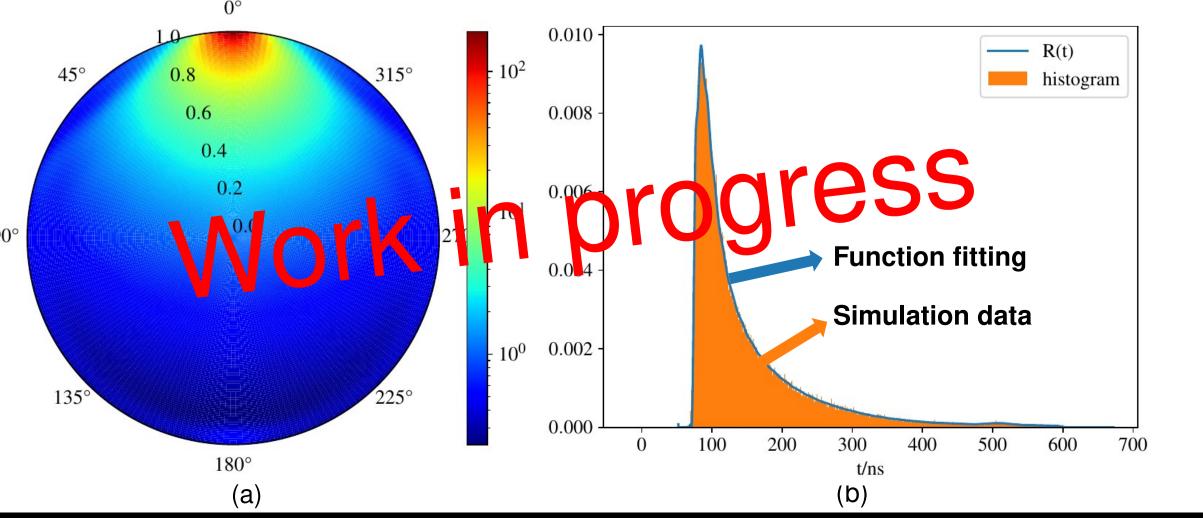


Figure 5: Use 96 order Legendre and 121 order Zernike polynomials to express $R_i(t; r, \theta_i)$. (a) shows the position response (time integration); (b) shows the time response $R_i(t; 1, \pi/4)$.

Summary

- PMT response function is effective to describe the response of point-source event.
- The approach is pure probabilistic and is verified to be unbiased on radius

Prospect

- PE number will be replaced with charge, based on charge model of small PMT.
- The approach can be applied to other system with time and charge readouts. \geq

References

Yang, Cheng-Feng, et al. "Reconstruction of Muon Bundle in the JUNO Central Detector." arXiv preprint arXiv: 2201.11321 (2022). 2. An, Fengpeng, et al. "Neutrino physics with JUNO". Journal of Physics G: Nuclear and Particle Physics 43.3 (2016): 030401