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Introduction

Graph Neural Netwok (GNN) Architecture

< Taishan Antineutrino Observatory : GNNs are complex models that are able to deal with more granular

iInput, providing better precision by processing the full information.

® Aton-level liquid scintillator detector e The detector topology is encoded into graph (No.of nodes = 4024)
® Full coverage of Silicon PhotoMultipliers e The input data: graph + node features are passed onto residual
e Operates at -50°C hence eliminates the dark noise blocks in between every convolutional layer.

® Photoelectron yield : 4500 p.e./Mev e The features are then flattened and sent to a Fully Connected
® High energy resolution: ~ 2% at 1 MeV Network (FCN) that predicts the vertices.

% Physics Goals : The hyperparameters used in the model are summarized in table 2.
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® Provide model-independent reference spectrum for JUNO = | f |
® Provide a benchmark measurement to examine nuclear database ¢ o)
e Search for light sterile neutrinos with a mass scale around 1 eV & éﬁ =/
e Verification of the detector technology for reactor monitoring .
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Fig. 2: GNN Architecture
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Fig. 1. Schematic view of TAO detector
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Dataset : Mopte Carlq (MC) sample.s from TAO offline software Fig. 4: Vertex resolution in each direction at 1 MeV
Events . Uniformly distributed within the central detector (CD)
Momentum : 0-10 MeV Training : 80k MC e Testing : 20k MC e’ :
Conclusions
Table 1: Data Structure of a single event
Parameter Name Type [ x size ] The work demonstrates the general applicability of Deep Learning
True information techniqugs for vertex reconstru_ction. |
Event ID evtlD int ® GNN incorporates the detailed detector topography, the SiPM-
wise information is very crucial for vertex reconstruction.
Average position of energy deposition GdLSEdepX e Resolution achieved by the model @1 MeV :
GdLSEdepY float x 3 — — _
GALSEdepZ ox = 30.16 mm, oy = 36.68 mm, oz = 39.16 mm
Model input
| | | References
Total number of hits nHits int
Eirst hit time firstHitTime float [1] Fengpeng An et al. Improved Measurement of the Reactor Antineutrino Flux
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SIPM ID of the Hits SIPMHitID it g](‘) t2h0e Reactor Antineutrino Spectrum with Sub-percent Energy Res-olution. 5
Hit timings of detected photons SiPMHitT float [3] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z. & Sun, M. (2018). Graph Neural
3y Networks: A Review of Methods and Applications (cite arxiv:1812.08434).
e float x 3 [4] Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual
learning for image recognition, 2015. arXiv:1512.03385.
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