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Signal 
● ⊽ₑ signature = prompt scintillation (e  e ) ⁺ ⁻

+ delayed  neutron capture

● E ₑ  ⊽ ≈  Ee⁺ + ( m  - m  + mₑ )ₙ ₚ     

              
TAO ~ 2000 inverse β-decay (IBD) 

events/day

Fig. 1: Schematic view of TAO detector

The work demonstrates the general applicability of Deep Learning 

techniques for vertex reconstruction.
● GNN incorporates the detailed detector topography, the SiPM-

wise information is very crucial for vertex reconstruction.
● Resolution achieved by the model @1 MeV :

σₓ = 30.16 mm, σᵧ = 36.68 mm,  σz = 39.16 mm
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      Parameter                                                                         Values

Loss                                                            Mean Squared Error 

Optimizer                                                                           Adam

Learning rate                                                                    0.0005

Batch size                            10

N.Epochs                                                          20        

                                                             

Table 2: Hyperparameters of GNN

Table 1: Data Structure of a single event

● The reconstructed event positions and the deposited energy 

positions are compared (Fig 3.). 
● The vertex resolution in each direction is estimated from the 

gaussian fit (Fig 4). 
● The observed mean values are consistent with zero and the 

resolutions are similar in the three directions.

Fig. 4: Vertex resolution in each direction at 1 MeV
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GNNs are complex models that are able to deal with more granular 

input, providing better precision by processing the full information.
● The detector topology is encoded into graph (No.of nodes = 4024)
● The input data: graph + node features are passed onto residual 

blocks  in between every convolutional layer.
● The features are then flattened and sent to a Fully Connected 

Network (FCN) that  predicts the vertices. 

The  hyperparameters used in the model are summarized in table 2.

Fig. 2: GNN Architecture
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❖ Taishan Antineutrino Observatory :

● A ton-level liquid scintillator detector 
● Full coverage of Silicon PhotoMultipliers
● Operates at -50  hence eliminates the dark noise℃

● Photoelectron yield : 4500 p.e./Mev
● High energy resolution: ~ 2% at 1 MeV

❖ Physics Goals :

● Provide model-independent reference spectrum for JUNO                    
● Provide a benchmark measurement to examine nuclear database
● Search for light sterile neutrinos with a mass scale around 1 eV
● Verification of the detector technology for reactor monitoring

Introduction

Dataset        :  Monte Carlo (MC) samples from TAO offline software

Events         :   Uniformly distributed within the central detector (CD) 

Momentum  : 0 - 10 MeV    Training : 80k MC e    Testing : 20k MC e   ⁺ ⁺

Fig. 3: True vs predicted positions
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        Parameter                                                                Name                   Type [ x size ]

Event ID                                                                   evtID                                int              

    

Average position of energy deposition                   GdLSEdepX                        

                                                                               GdLSEdepY                      float x 3

                                                                               GdLSEdepZ             

                                Model input

Total number of hits                                                nHits                                 int                  

 First hit time                                                           firstHitTime                      float                

                                                                

                                 SiPM-wise information

      SiPM ID of the Hits                                                 SiPMHitID                        int

      Hit timings of detected photons                              SiPMHitT                         float

      Position                                                                                                           float x 3

                                True information 
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