

Vertex Reconstruction in JUNO-TAO Using Deep Learning

On behalf of the JUNO collaboration Vidhya Thara Hariharan Institute of Experimental Physics, University of Hamburg

Introduction

- Taishan Antineutrino Observatory :
 - A ton-level liquid scintillator detector
 - Full coverage of Silicon PhotoMultipliers
 - Operates at -50°C hence eliminates the dark noise
 - Photoelectron yield : 4500 p.e./Mev
 - High energy resolution: ~ 2% at 1 MeV
- Physics Goals :

• Provide model-independent reference spectrum for JUNO

Graph Neural Netwok (GNN) Architecture

GNNs are complex models that are able to deal with more granular input, providing better precision by processing the full information.

- The detector topology is encoded into graph (No.of nodes = 4024)
- The input data: graph + node features are passed onto residual blocks in between every convolutional layer.
- The features are then flattened and sent to a Fully Connected Network (FCN) that predicts the vertices.

The hyperparameters used in the model are summarized in table 2.

- Provide a benchmark measurement to examine nuclear database
- Search for light sterile neutrinos with a mass scale around 1 eV
- Verification of the detector technology for reactor monitoring

TAO Detector

Fig. 2: GNN Architecture

Parameter	Values
Loss Optimizer Learning rate Batch size N.Epochs	Mean Squared Error Adam 0.0005 10 20
N.Epochs	20

Table 2: Hyperparameters of GNN

Results

- The reconstructed event positions and the deposited energy positions are compared (Fig 3.).
- The vertex resolution in each direction is estimated from the gaussian fit (Fig 4).
- The observed mean values are consistent with zero and the

Data Preparation

Dataset : Monte Carlo (MC) samples from TAO offline software : Uniformly distributed within the central detector (CD) Events Momentum : 0 - 10 MeV Training : 80k MC e^+ Testing : 20k MC e^+

Table 1: Data Structure of a single event

Parameter	Name	Type [x size]
<i>True information</i> Event ID	evtID	int
Average position of energy deposition	GdLSEdepX GdLSEdepY GdLSEdepZ	float x 3
Model input		
Total number of hits	nHits	int
First hit time	firstHitTime	float
SiPM-wise information		
SiPM ID of the Hits	SiPMHitID	int
Hit timings of detected photons	SiPMHitT	float
Position		float x 3

resolutions are similar in the three directions.

Conclusions

The work demonstrates the general applicability of Deep Learning techniques for vertex reconstruction.

- GNN incorporates the detailed detector topography, the SiPMwise information is very crucial for vertex reconstruction.
- Resolution achieved by the model @1 MeV : $\sigma_x = 30.16 \text{ mm}, \sigma_y = 36.68 \text{ mm}, \sigma_z = 39.16 \text{ mm}$

References

[1] Fengpeng An et al. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Chin. Phys., C41(1):013002, 2017. [2] A. Abusleme et al. TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Res-olution. 5 2020.

[3] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z. & Sun, M. (2018). Graph Neural Networks: A Review of Methods and Applications (cite arxiv:1812.08434). [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. arXiv:1512.03385.

