Direction Reconstruction of Atmospheric Neutrinos in JUNO

with Machine Learning Methods

Hongyue Duyang¹, Teng Li¹, Jiaxi Liu², Zhen Liu² ¹Institute of Frontier and Interdisciplinary Science, Shandong University ²Institute of High Energy Physics

JUNO Experiment

- JUNO is a next-generation large liquidscintillator neutrino detector
- The Central Detector is instrumented by 17'612 20-inch Large-PMTs (LPMTs) and 25'600 3-inch Small-PMTs (SPMTs)
- Its main goal is the determination of neutrino

Motivation

The sensitivity to the mass ordering comes from the measurement of

- reactor anti-neutrinos at low energies
- atmospheric neutrinos at high energies (GeV level)

See poster#848 by Jinnan Zhang

mass ordering

Feature Extraction

- The temporal evolution signals collected by PMTs, i.e. PMT waveforms, reflect the event topology in the JUNO Central Detector
- Features extracted from PMT waveforms not only reduce the input data volume, but also preserve the characteristic of each PMT signal
 First Hit Time (distance between

- First Hit Time (distance between track and PMT, and angle information)
- Slope (angle between track and PMT)
- Total nPE (energy deposition topology)
- Peak Time (energy deposition topology)
- Four-moments, etc.

Model Inputs

Monte Carlo simulation sample:

- Detector simulation
- 135K atmospheric v_{μ} events
- Charge-current neutrino events with energy above 1GeV

Input features:

• LPMT features

Machine Learning Methods

Two independent machine learning methods have been explored using two types of Machine learning models:

- Deep planar CNN model: EfficientNet^[1]
 Input images are obtained by planar
 projection
- GNN model based on DeepSphere^[2]
 Input images are directly built from the sphere to avoid distortions caused by projection

EfficientNet architecture ^[1]

DeepSphere architecture^[2]

ICHEP-2022

Virtual

Conclusions

Summary and Outlook

Zenith angular resolution (gaussian sigma)

10	•	- Deensphere
TO		Deepsphere
		 EfficientNet

Similar direction reconstruction performance for atmospheric neutrinos in JUNO has been obtained using two independent

machine learning methods.

Preliminary results based on detector simulation show great potential for the high-precision reconstruction of the neutrino direction.

6-13 07 2022

Study based on full Monte Carlo simulation is ongoing, preliminary results show comparable performance to that obtained from detector simulation.

References

Tan M, Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks. International conference on machine learning; 2019: PMLR.
 Defferrard M, et. al. Deepsphere: a graph-based spherical cnn. arXiv:201215000. 2020.

