Direction Reconstruction of Atmospheric Neutrinos in JUNO

with Machine Learning Methods

Hongyue Duyang?, Teng Lit, Jiaxi Liu?, Zhen Liu?
YInstitute of Frontier and Interdisciplinary Science, Shandong University ... s
2|nstitute of High Energy Physics

JUNO Experiment

B JUNO is a next-generation large liquid- The sensitivity to the mass ordering
scintillator neutrino detector - comes from the measurement of

B The Central Detector is instrumented by 17°612
20-inch Large-PMTs (LPMTs) and 25’600 3-inch
Small-PMTs (SPMTs)

B |ts main goal is the determination of neutrino .
mass ordering A

* reactor anti-neutrinos at low energies
 atmospheric neutrinos at high energies
(GeV level)

See poster#848 by Jinnan Zhang

Feature Extraction

Model Inputs

® The temporal evolution signals collected by PMTs, i.e. PMT waveforms, reflect the event topology Monte Carlo simulation sample:

in the JUNO Central Detector * Detector simulation
® Features extracted from PMT waveforms not only reduce the input data volume, but also preserve < 135K atmospheric v, events
the characteristic of each PMT signal * First Hit Time (distance between * Charge-current neutrino

track and PMT, and angle
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* Four-moments, etc.

Machine Learning Methods

Two independent machine learning EfficientNet architecture !!! DeepSphere architecture!?!

methods have been explored using two
types of Machine learning models:

e Deep planar CNN model: EfficientNet!1!
Input images are obtained by planar
projection
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Conclusions Summary and Outlook
® Zenith angular resolution : B Similar direction reconstruction performance for atmospheric
(gaussian sigma) i o eepepien neutrinos in JUNO has been obtained using two independent
° ° ° ° 16A 7 : :
improves with increasing machine |earn|ng methods.
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B Preliminary results based on detector simulation show great
® Similar results are potential for the high-precision reconstruction of the neutrino
obtained from direction.
EfficientNetV2 and | ' : » Study based on full Monte Carlo simulation is ongoing, preliminary
DeepSphere models ? Work in progress results show comparable performance to that obtained from
L 2 et enerayoey) 6 detector simulation.
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