

Muon flux and muon-induced neutron yield measurement at China Jinping underground laboratory

Bin Zhang on behalf of JNE Collaboration, zhangb20@mails.tsinghua.edu.cn Department of Engineering Physics & Center for High Energy Physics, Tsinghua University, Beijing, China

arxiv: 2007.15925

1. China Jinping Underground Laboratory (CJPL)

- Deepest lab with vertical rock overburden (6720 m.w.e.);
- Lowest cosmic-ray and reactor neutrino backgrounds;
- Ideal place for experimental studies including MeV-scale neutrino, dark matter and $0v\beta\beta$.

2. Jinping 1-ton prototype detector

- A 1.2 m spherical acrylic detector at CJPL-I.
- To measure cosmic-ray, neutron, and radon backgrounds.
- To demonstrate the background reduction techniques:
- Nitrogen purge and sealing
- Liquid scintillator distillation
- To test the performance of the Cherenkov liquid scintillator [2].

4. Muon measurement at CJPL-I

- Underground muon distribution prediction with:
- Input 1: Modified Gaisser's formula [4], which describes muon distribution at sea level.
- Input 2: Jinping mountain's terrain.

Mean energy

- Flux measurement:
- Detected 343 muon events from 820.28 live-days
- Separated vertical and total fluxes.
- ✓ Total flux = $(3.61 \pm 0.19_{\text{stat.}} \pm 0.10_{\text{sys.}}) \times 10^{-10} \text{ cm}^{-2} \text{s}^{-1}$
- Compared with other labs:

Direction measurement:

is (4 ± 2) times that of laboratory situated down mine shafts, due to leakage through mountain.

Muon leaks into laboratory through the mountain.

◆ Flux: under mine VS under mountain: ◆ Flux prediction at JNE site of CJPL-II:

- At the same vertical depth, muon flux Input 1: Jinping mountain's terrain
- of laboratory situated under mountains <a>Input 2: Cosmic-ray measured at CJPL-I.

- ☐ The lowest cosmic-ray muon flux of all underground laboratories so far!
- Jinping Neutrino Experiment will be carried out here! see poster 131 for details.

3. Muon direction reconstruction

Time-Based Template Reconstruction in liquid scintillation:

How to extract the muon direction from time?

The smaller the distance from the muon track,

the earlier the arrival time of PMT

- ☐ Template *i* is tagged with : • $p_i = (\cos\theta, \phi)$ and $R_i = (\cos\alpha, \beta)$
- t_{ii} : arrival time at PMT j

- p: reconstructed direction
 - Performance of the reconstruction method:

 \square $\triangle\Theta$ is included angle between the truth and reconstructed directions. \square Mean of $\triangle\Theta$ is close to the minimum when k=50

entry point on the

incident muon direction

γ(2.2 MeV

detector sphere

5. Study of muon-induced neutrons

neutron event and the mother muon event

6. Summary

- ◆ We have measured the cosmic-ray muon flux and muon-induced neutron yield and reconstructed various muon directions through the mountain at CJPL-I.
- ◆ We extrapolate the measured muon flux from CJPL-I to the JNE site at CJPL-II and find it the lowest among all the underground laboratories.

References:

♦ Yield measurement:

Beacom, John F., et al. "Physics prospects of the Jinping neutrino experiment." Chinese Physics C 41.2 (2017): 023002.

Yield in liquid scintillation: $(3.44 \pm 1.86_{\text{stat.}} \pm 0.76_{\text{sys.}}) \times 10^{-4} \, \mu^{-1} \text{g}^{-2} \text{cm}^{-2}$

- 2. Guo, Ziyi, et al. "Slow liquid scintillator candidates for MeV-scale neutrino experiments." Astroparticle Physics 109 (2019): 33-40.
- 3. Wang, Zongyi, et al. "Design and analysis of a 1-ton prototype of the Jinping Neutrino Experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 855 (2017): 81-87.
- Guan, Mengyun, et al. "A parametrization of the cosmic-ray muon flux at sea-level." arXiv preprint arXiv:1509.06176(2015).