

Reconstruction of atmospheric neutrino events at JUNO

Rosmarie Wirth¹, Marta Molla Colomer² and Mariam Rifai^{3,4} on behalf of the JUNO collaboration

1. Institute of Experimental Physics, University of Hamburg, Hamburg, Germany, 2. Inter-université libre de Bruxelles (ULB), 3. Forschungszentrum Jülich GmbH, Nuclear Physics Institute IKP-2, Jülich, Germany, 2.

4. III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany

Motivation: Use atmospheric neutrinos to enhance JUNOs sensitivity for the neutrino mass ordering (NMO).

Atmospheric Neutrino Data

Idea: Optimize readout window for atmospheric neutrino events to improve charge to energy ratio.

• Using simulated atmospheric neutrino events • Fully contained charged current events • Prompt signal trigger $nPE_{MC Truth} > 10^5 p.e.$

Energy reconstruction with linear fit

Idea: Reconstruct the deposited energy by using a linear fit to the reconstructed number of photo electrons (nPE).

Using fully contained events with readout window selection.

Reconstruction results using fitted parameter:

resulting energy resolution of ~ 20 %

Reconstruction of neutrino direction

Idea: Use the PMT detection probability to infer the reconstructed light emission topology, based on topological track reconstruction^[1].

Approach - Topological Track Reconstruction:

 r_{ref} : Reference point, any point along track

Analytical probability density functions:

Energy reconstruction using Graph Convolution

Idea: Use convolution on charge detected by PMTs on detector surface to reconstruct the energy of FC and CC atmospheric neutrino events.

Graph Convolution:

- Graph consists of nodes and edges
- Nodes represent PMTs of central detector
- Each Node connected to the four closest neighbors in space
- Using 5000 LPMTs
- Convolution based on Kipf and Welling^[2]:

based on the scintillation average wavelength (436 nm), total reflection and re-emitted light removed

Application on neutrino direction:

Data:

- Charge and hit time per PMT
- → considering 17612 LPMTs
- \rightarrow 400 ns event window
- Reference point from MC Truth smeared with 25 cm uncertainty and PMT time resolution

Results:

 \rightarrow of 6 iterations with different mash sizes

 For Muon • For CC v_{μ}

Graph represents detector geometry.

Architecture:

- Inputs: First hit time, charge per PMT + charge over time distribution
- Charge summed over readout window selection
- Graph Convolution with ResNet Blocks
- 1D convolution on Charge over time
- Combination of both convolution outputs
- Fully Connected Layers
- Activation function: SELU

Results:

80.0

0.06

0.04

0.02

- Using fully contained charged current events
- Reconstruction of the deposited energy in NMO range
- Linear bias correction on prediction applied to reduce offset

1500

1000

500 -

-1000

ress

D

2

0

Work

resulting energy resolution of ~ 6 %, after bias correction

Conclusion: Energy and directional reconstruction for atmospheric neutrinos feasible on JUNO data.