

Gianfranco Ingratta for the DUNE Collaboration

41st International Conference on High Energy Physics (ICHEP 2022) - BOLOGNA

SAND PHYSICS PROGRAM

$\nu/\bar{\nu}$ BEAM MONITORING

Continuous monitoring: one of the main purposes of SAND will be the neutrino beam monitoring to <u>spot potential</u> <u>variations</u> that would directly affect the FD oscillation analysis.

□ The beam is monitored by reconstructing the neutrino energy from the measurement of the particles momenta produced in ν_{μ} CC interactions.

Momentum reconstruction of particles is obtained requiring a

FLUX MEASUREMENTS

D Measurement of ν flux $\phi(E_{\nu})$ is mandatory to <u>extract oscillation</u> probability from measured neutrino interactions $N_x(E_{rec})$ for a process x:

$$N_{X} = \int P_{osc}(E_{\nu}) * \phi(E_{\nu}) * \sigma_{X}(E_{\nu}) * R_{phys}(E_{\nu}, E_{vis}) * R_{det}(E_{vis}, E_{rec}) dE_{\nu}$$

$$\nu \text{ flux} \qquad \text{Nuclear smearing Detector response}$$

□ Large sample of $\nu - H$ CC interactions in STT allows an accurate determination of absolute and relative ν fluxes using $\nu_{\mu}p \rightarrow$

BACKGROUND REJECTION

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

□ Cosmic radiation and ambient radioactivity backgrounds are suppressed requiring a time coincidence with the beam spill;

- The most critical background source are beam related neutrino interactions in the material surrounding the detector
- □ External bkg rejection: selection and neutral network jointly applied to timing and topological information from subdetectors

minimum number of STT hits in the YZ plane: \geq 6 for interaction in ECAL and GRAIN, \geq 4 for interactions in STT.

	•			
Proton beam parameter	1σ deviation	$\frac{New}{\sqrt{\Delta\chi^2}(E_\nu)}$		
	as given by			
	beam group	true	rec	
Horn current	+3 kA	12.57	9.44	١
Water layer thickness	+0.5 mm	4.69	3.58	L
Proton target density	+2%	5.28	4.07	L
Beam sigma	+0.1 mm	4.41	3.53	L
Beam off set X	+0.45 mm	5.11	3.54	L
Beam theta phi	0.07 mrad θ , 1.57 ϕ	0.62	0.28	L
Beam theta	0.070 mrad	0.91	0.58	L
horn 1 X shift	+0.5 mm	4.70	3.42	L
horn 1 Y shift	+0.5 mm	5.27	3.87	L
horn 2 X shift	+0.5 mm	1.18	0.69	L
horn 2 Y shift	+0.5 mm	1.31	0.77	L

SAND will have enough sensitivity $(\sqrt{\Delta \chi^2} > 3)$ to detect most of beam variations on **1 week of data taking**

Systematic uncertainties on flux measurement (5 year data taking, STT-only) [1]

NUCLEAR EFFECT CONSTRAINS

□ Constrains of nuclear smearing on Ar, crucial to reduce systematics at FD, can be done from a direct comparison between Ar and H interactions within the same detector. For ν – H interactions:

 $\checkmark \phi(E_{\nu})$ known at level of 1%;

 $\checkmark \sigma_X(E_{\nu})$ measured from high statistic sample;

 $\checkmark R_{phys} \equiv 1$ (no nuclear smearing for H target)

✓ $R_{det} \delta p/p \sim 0.2\%$ calibrated in-situ from $K_0 \rightarrow \pi^+\pi^-$ in STT

Signal ϵ (%)	Ext bkg Tot ϵ (%)	Purity (%)
98.32	7.24	9.98
95.32	1.94	28.59
92.89	0.02	98.01
92.71	0.01	99.65
	STIFV Signal ϵ (%) 98.32 95.32 92.89 92.71	STTPVExt bkgSignal ϵ (%)Tot ϵ (%)98.327.2495.321.9492.890.0292.710.01

CONCLUSIONS

SAND is capable of: (*i*) **spot beam changes** on few days basis, (*ii*) accurately **measure the** $v(\bar{v})$ **flux**, (*iii*) **constraining nuclear effects** reducing the systematics uncertainties affecting the oscillation analysis. Additionally, SAND will have its own program of **searches for new physics** exploiting a high statistics sample of v - H.

[1] "DUNE Near Detector CDR", The DUNE collaborations, arXiv:2103.13910;
[2] The KLOE calorimeter, NIM A 482 (2002) 364;
[3] "Precision Measurements of Fundamental Interactions with (Anti)Neutrinos", arXiv: 1910.05995
[4] R. Accorsi, "Design of a near-field coded aperture cameras for high-resolution medical and industrial gamma ray imaging" 08 2005

medical and industrial gamma-ray imaging", 08 2005.