

High-energy reactor neutrino flux measurement at Daya Bay

Yongbo Huang (huangyb@gxu.edu.cn), Guangxi University, Nanning, China **On behalf of the Daya Day collaboration**

PMTs

Tvvek

Nuclear reactors produce pure $\overline{\nu}_{\rho}$ from beta decays of fission daughters.

- Reactor neutrinos have been an important tool for both discovery and precision measurement in the history of neutrino studies [1].
- Previous measurements of reactor neutrinos only focus on the prompt energy (E_p) less than 9 MeV.
 - Daya Bay's high statistic samples enable new studies for high energy reactor neutrinos > 9 MeV [2].
- 6 low enriched uranium (LEU) commercial reactors, each with 2.9 GW thermal power.
- Eight identically designed underground detectors deployed at different baselines [3].
- The largest dataset (~6 million) of reactor neutrinos collected from December 2011 to December 2022.

Data selection

Inverse beta decay (IBD) events: the interaction candidates are selected following the criteria similar to "Selection A" described in Ref. [4]

 $E_p \approx E_v - 0.8 \, MeV$

- Main background: cosmogenic fast neutrons and cosmogenic isotopes.
- Challenge: large background to signal ratio in the 8-12 MeV prompt energy region.

Multivariate analysis

The probability distribution function (PDF) $F(r; \Delta t, z, w)$ is constructed in each prompt-energy bin

for the multivariant event-by-event fitter with pull terms $g(\varepsilon)$:

$$F(\boldsymbol{r}; \boldsymbol{\Delta t}, z, w) = \sum_{p} r_{p} f_{p}(\boldsymbol{\Delta t}) h_{p}(z) k_{p}(w) \qquad \qquad \chi^{2}(\boldsymbol{r}) = -2 \sum \left[\log F(\boldsymbol{r}; \boldsymbol{\Delta t}, z, w)\right] + g(\boldsymbol{\epsilon})$$

- \triangleright p: event types (IBD, cosmogenic isotopes, or fast neutron);
- \succ r: vector of r_p , the ratio of evens in type p over the total number of events in each E_p bin;
- $\succ \Delta t$: vector for time difference between event and its preceding muon events;
- \succ z: vertical position of prompt signal;
- \succ w: weighted reactor power at the occurrence of the candidate;
- With the best-fit values of *r*, the probability of being an IBD signal can be calculated for each event: ullet
- $P_{IBD} = \frac{r_{IBD} f_{IBD}(\Delta t) h_{IBD}(z) k_{IBD}(w)}{F(r; \Delta t, z, w)}$ • $f_{IBD}(\Delta t)$: time to last muon PDF; $h_{IBD}(z)$: vertical position PDF; $k_{IBD}(w)$: reactor power PDF;
- Separate 2500 signal events from about 9000 IBD candidates above 8 MeV. (using the dataset taken in 1958 calendar days)
- The P_{IBD} distributions from data and predictions are consistent within statistical uncertainty.

Unfolded Antineutrino Spectrum

We provide the unfolded antineutrino spectrum above 7 MeV as a data-based reference for other experiments. Significance in rejecting the hypothesis of no reactor antineutrinos above 10 MeV is determined to be 6.2σ . For the first time, this work extends the energy region of reactor antineutrinos above 10 MeV by direct measurement.

References:

 \bullet

1. L. J. Wen et al. Ann.Rev.Nucl.Part.Sci. 67 (2017) 183-211 2. F P. An et al. (Daya Bay Collaboration), arXiv:2203.06686 [hep-ex] 3. F P. An et al. (Daya Bay Collaboration), Phys. Rev. D 95, 072006 (2017) 4. F. P. An et al. (Daya Bay), Phys. Rev. D 95, 072006 (2017) 5. M. Estienne et al., Phys. Rev. Lett. 123, 022502 (2019)

